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Abstract. The introduction of first-class type classes in the Coq system
calls for re-examination of the basic interfaces used for mathematical for-
malization in type theory. We present a new set of type classes for mathe-
matics and take full advantage of their unique features to make practical
a particularly flexible approach formerly thought infeasible. Thus, we
address both traditional proof engineering challenges as well as new ones
resulting from our ambition to build upon this development a library of
constructive analysis in which abstraction penalties inhibiting efficient
computation are reduced to a minimum.
The base of our development consists of type classes representing a stan-
dard algebraic hierarchy, as well as portions of category theory and uni-
versal algebra. On this foundation we build a set of mathematically sound
abstract interfaces for different kinds of numbers, succinctly expressed
using categorical language and universal algebra constructions. Strate-
gic use of type classes lets us support these high-level theory-friendly
definitions while still enabling efficient implementations unhindered by
gratuitous indirection, conversion or projection.
Algebra thrives on the interplay between syntax and semantics. The
Prolog-like abilities of type class instance resolution allow us to con-
veniently define a quote function, thus facilitating the use of reflective
techniques.

1 Introduction

The development of libraries for formalized mathematics presents many software
engineering challenges [13, 17], because it is far from obvious how the clean,
idealized concepts from everyday mathematics should be represented using the
facilities provided by concrete theorem provers and their formalisms, in a way
that is both mathematically faithful and convenient to work with.

For the algebraic hierarchy—a critical component in any library of formalized
mathematics—these challenges include structure inference, handling of multi-
ple inheritance, idiomatic use of notations, and convenient algebraic manipula-
tion (e.g. rewriting). Several solutions have been proposed for the Coq theorem
prover: dependent records [16] (a.k.a. telescopes), packed classes [15], and oc-
casionally modules. We present a new approach based entirely on Coq’s new
type class mechanism, and show how it can be used to make fully ‘unbundled’
predicate-representations of algebraic structures practical to work with.

Since we intend to use this development as a basis for constructive analysis
with practical certified exact real arithmetic, an additional objective and moti-
vation in our design is to facilitate efficient computation. In particular, we want
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to be able to effortlessly swap implementations of number representations. Do-
ing this requires that we have clean abstract interfaces, and mathematics tells us
what these should look like: we represent N, Z, and Q as interfaces specifying
an initial semiring, an initial ring, and a field of integral fractions, respectively.
To express these interfaces elegantly and without duplication, our development1

includes an integrated formalization of parts of category theory and multi-sorted
universal algebra, all expressed using type classes for optimum effect.

In this paper we focus on the Coq proof assistant. We conjecture that the
methods can be transferred to any type theory based proof assistant supporting
type classes such as Matita [3].

Outline. In section 2 we briefly describe the Coq system and its implementation
of type classes. Then, in section 3, we give a very concrete introduction to the
issue of bundling, arguably the biggest design dimension when building interfaces
for abstract structures. In section 4 we show how type classes can make the use
of ‘unbundled’ purely predicate based interfaces for abstract structures practical.
Next, in section 5, we discuss our algebraic hierarchy implemented using such
predicate classes. In sections 6 and 7 we give a taste of what category theory
and universal algebra look like in our development, and in section 8 we use these
facilities to build abstract interfaces for numbers. In order to illustrate a very
different use of type classes, we discuss the implementation of a quoting function
for algebraic terms in terms of type classes, in section 9. In section 10 we hint
at an interface for sequences, but describe how a limitation in the Coq system
makes its use problematic. We end with conclusions in section 11.

2 Preliminaries

The Coq proof assistant is based on the calculus of inductive constructions [11,
12], a dependent type theory with (co)inductive types; see [32, 5]. In true Curry-
Howard fashion, it is both an excessively pure, if somewhat pedantic, functional
programming language with an extremely expressive type system, and a language
for mathematical statements and proofs. We highlight some aspect of Coq that
are of particular relevance to our development.

Types and propositions. Propositions in Coq are types [21, 20], which themselves
have types called sorts. Coq features a distinguished sort called Prop that one
may choose to use as the sort for types representing propositions. The distin-
guishing feature of the Prop sort is that terms of non-Prop type may not depend
on the values of inhabitants of Prop types (that is, proof terms). This regime
of discrimination establishes a weak form of proof irrelevance, in that changing
a proof can never affect the result of value computations. On a very practical
level, this lets Coq safely erase all Prop components when extracting certified
programs to OCaml or Haskell.

1 The sources are available at: http://www.eelis.net/research/math-classes/
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Occasionally there is some ambiguity as to whether a certain piece of infor-
mation (such as a witness to an existential statement) is strictly ‘proof matter’
(and thus belongs in the Prop sort) or actually of further computational interest
(and thus does not belong to the Prop sort). We will see one such case when we
discuss the first homomorphism theorem in section 7.3. Coq provides a modest
level of universe-polymorphism so that we may avoid duplication when trying to
support Prop-sorted and non-Prop-sorted content with a single set of definitions.

The ‘native’ notion of equality in Coq is that of terms being convertible,
naturally reified as a proposition by the inductive type family eq with single
constructor eq refl:

eq refl : Π (T: Type) (x: T), x ≡ x,

where ‘a ≡ b’ is notation for eq T a b. Here we diverge from Coq tradition and
reserve = for setoid equality, as this is the equality we will be working with most
of the time. Importantly, since convertibility is a congruence, a proof of a ≡ b
lets us substitute b for a anywhere inside a term without further conditions. We
mention this explicitly only because rewriting does give rise to conditions when
we depart from Leibniz equality and introduce equivalence relations representing
abstractions over common representations of the same conceptual object. For
instance, consider formal fractions of integers as a representation of rationals.
Rewriting a subterm using such an equality is permitted only if the subterm is
an argument of a function that has been proven to respect the equality. Such
a function is called proper, and propriety must be proved for each function in
whose arguments we wish to enable rewriting.

Because the Coq type theory lacks quotient types (as it would make type
checking undecidable), one usually bases abstract structures on a setoid (‘Bishop
set’): a type equipped with an equivalence relation [6, 18, 4]. As we will see in sec-
tion 7, this way of working pays off when working with notions such as quotient
algebras.

Effectively keeping track of, resolving, and combining proofs of equivalence-
ness and propriety when the user attempts to substitute a given (sub)term using
a given equality, is known as “setoid rewriting”, and requires nontrivial infras-
tructure and support from the system. The Coq implementation of these mech-
anisms was largely rewritten by Matthieu Sozeau [30] to make it more flexible
and to replace the old special-purpose setoid/morphism registration command
with a clean type class based interface.

The algebraic hierarchy of the Ssreflect libraries [15] uses an interesting
(if fairly restrictive) alternative approach. It requires unicity of representation
for all objects so that Leibniz equality is always applicable.

Type classes. Type classes have been a great success story in the Haskell func-
tional programming language, as a means of organizing interfaces of abstract
structures. Coq’s type classes provide a superset of their functionality, but im-
plemented in a different way.

In Haskell and Isabelle, type classes and their instances are second class.
They are handled as specialized syntactic constructs whose semantics are given
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specifically by the type class apparatus. By contrast, the expressivity of depen-
dent types and inductive families as supported in Coq, combined with the use
of pre-existing technology in the system (namely proof search and implicit argu-
ments) enable a first class type class implementation [31]: classes are ordinary
record types (‘dictionaries’), instances are ordinary constants of these record
types (registered as hints with the proof search machinery), class constraints are
ordinary implicit parameters, and instance resolution is achieved by augmenting
the unification algorithm to invoke ordinary proof search for implicit arguments
of class type. Thus, type classes in Coq are realized by relatively minor syntactic
aids that bring together existing facilities of the theory and the system into a
coherent idiom, rather than by introduction of a new category of qualitatively
different definitions with their own dedicated semantics.

3 Bundling is bad

Algebraic structures are expressed in terms of a number of carrier sets, a number
of operations and relations on these carriers, and a number of laws that the
operations and relations satisfy. In a system like Coq, we have different options
when it comes to representing the grouping of these components. On one end
of the spectrum, we can simply define the (conjunction of) laws as an n-ary
predicate over n components, forgoing explicit grouping altogether. For instance,
for the mundane example of a reflexive relation, we could use:

Definition reflexive {A: Type} (R: relation A): Prop := Π a, R a a.

The curly brackets used for A mark it as an implicit argument.
More elaborate structures, too, can be expressed as predicates (expressing

laws) over a number of carriers, relations, and operations. While optimally flex-
ible in principle, in practice näıve adoption of this approach (that is, without
using type classes) leads to substantial inconveniences in actual use: when stat-
ing theorems about abstract instances of such structures, one must enumerate
all components along with the structure (predicate) of interest. And when apply-
ing such theorems, one must either enumerate any non-inferrable components,
or let the system spawn awkward metavariables to be resolved at a later time.
Importantly, this also hinders proof search for proofs of the structure predicates,
making any nontrivial use of theorems a laborious experience. Finally, the lack
of canonical names for particular components of abstract structures makes it
impossible to associate idiomatic notations with them.

In the absence of type classes, these are all very real problems, and for this
reason the two largest formalizations of abstract algebraic structures in Coq
today, CoRN [13] and Ssreflect [15], both use bundled representation schemes,
using records with one or more of the components as fields instead of parameters.
For reflexive relations, the following is a fully bundled representation—the other
end of the spectrum:

Record ReflexiveRelation: Type :=
{ rr carrier: Type
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; rr rel: relation rr carrier
; rr proof: Π x, rr rel x x }.

Superficially, this instantly solves the problems described above: reflexive rela-
tions can now be declared and passed as self-contained packages, and the rr rel
projection now constitutes a canonical name for relations that are known to be
reflexive, and we could bind a notation to it. While there is no conventional
notation for reflexive relations, the situation is the same in the context of, say, a
semiring, where we would bind + and ∗ notations to the record field projections
for the addition and multiplication operations, respectively.

Unfortunately, despite its apparent virtues, the bundled representation intro-
duces serious problems of its own, the most immediate and prominent one being
a lack of support for sharing components between structures, which is needed
to cope with overlapping multiple inheritance.

In our example, lack of sharing support rears its head as soon as we try
to define EquivalenceRelation in terms of ReflexiveRelation and its hypothetical
siblings bundling symmetric and transitive relations. There, we would need some
way to make sure that when we ‘inherit’ ReflexiveRelation, SymmetricRelation, and
TransitiveRelation by adding them as fields in our bundled record, they all refer to
the same carrier and relation. Adding additional fields stating equalities between
the three bundled carriers and relations is neither easily accomplished (because
one would need to work with heterogenous equality) nor would it permit natural
use of the resulting structure (because one would constantly have to rewrite
things back and forth).

Manifest fields [27] have been proposed to address exactly this problem. In
fact, a semblance has been implemented in the Matita system [28]. We hope
to convince the reader that type system extensions of this nature, designed to
mitigate particular symptoms of the bundled approach, are less elegant than a
solution (described in the next section) that avoids the problem altogether by
using predicate-like type classes in place of bundled records.

If we revert back to the predicate formulation of relations, we could still
define EquivalenceRelation in a bundled fashion without the need for equalities:

Record EquivalenceRelation: Type :=
{ er carrier: Type
; er rel: relation er carrier
; er refl: ReflexiveRelation er carrier er rel
; er sym: SymmetricRelation er carrier er rel
; er trans: TransitiveRelation er trans er rel }.

However, as before we conclude that EquivalenceRelation, too, should be a predi-
cate. Indeed, it would be rather strange for the interface of equivalence relations
to differ qualitatively from the interface of reflexive relations.

Another attempt to recover some grouping might be to bundle the carrier
with the relation into a (lawless) record, but this too hinders sharing. As soon
as we try to define an algebraic structure with two reflexive relations on the
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same carrier, we need awkward hacks to establish equality between the carrier
projections of two different (carrier, relation) bundles.

Even bundling just the operations of an algebraic structure together in a
record (with the carrier as a parameter) leads to the same problem when, for
example, one attempts to define a hypothetical algebraic structure with two
binary relations and a constant such that both binary relations form a monoid
with the constant.

A second problem with bundling is that as the bundled records are stacked
to represent higher and higher structures, the projection paths for their compo-
nents grow longer and longer, resulting in ever more unwieldy terms (coercions
and notations can make this less painful). Further, if one tries to implement some
semblance of sharing in a bundled representation, these projection paths addi-
tionally become non-canonical, and still more extensions have been proposed to
address this symptom, e.g. coercion pullbacks [2].

Thus, bundled representations come at a substantial cost in flexibility. Histor-
ically, using bundled representations has nevertheless been an acceptable trade-
off, because (1) the unbundled alternative was such a pain, and (2) the standard
algebraic hierarchy (up to, say, fields and modules) is not all that wild.

In the next section, we show that type-classification of structure predicates
and their component parameters has the potential to remedy the problems asso-
ciated with the naive unbundled predicate approach, giving us the best of both
worlds.

The observant reader may wonder whether it might be beneficial to go one
step further and unbundle proofs of laws and inherited substructures as well.
This is not the case, because there is no point in sharing them. After all, by
(weak) proof irrelevance, the ‘value’ of such proofs can be of no consequence
anyway. Indeed, parameterizing on proofs would be actively harmful because
instantiations differing only in the proof argument would express the same thing
yet be nonconvertible, requiring awkward conversions and hindering automation.

4 Predicate classes and operational classes

We will tackle the problems associated with the use of structure predicates one
by one, starting with those encountered during theorem application. Suppose we
have defined SemiGroup as a structure predicate as follows2:

Record SemiGroup (G: Type) (e: relation G) (op: G → G → G): Prop :=
{ sg setoid: Equivalence e
; sg ass: Associative op
; sg proper: Proper (e ⇒ e ⇒ e) op }.

Then by (1) making SemiGroup a class (by replacing the Record keyword with the
Class keyword), (2) marking its proofs as instances (again by replacing a single
2 Note that defining SemiGroup as a record instead of a straight conjunction does not

make it any less of a predicate. The record form is simply more convenient in that
it immediately gives us named projections for laws and substructures.
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keyword), and (3) marking the SemiGroup parameter of semigroup theorems as
implicit (by using curly instead of round brackets), we no longer have to pass
SemiGroup proofs around manually ourselves, letting instance resolution do it
for us instead. Because instance resolution is part of the unifier, this also works
when the statement of the theorem we wish to apply only mentions some of the
components (which admittedly doesn’t make much sense for semigroups).

Next, we turn to problems concerning theorem declaration. As a reference
point, our ideal will be the common mathematical vernacular, where one simply
says:

Theorem: For x, y, z in a semigroup G, x ∗ y ∗ z = z ∗ y ∗ x.

(This silly statement allows us to clearly present the syntax.)
Without further support from the system, this would have to be written as

Theorem example G e op {P: SemiGroup G e op}:
Π x y z, e (op (op x y) z) (op (op z y) x).

Because e and op are freshly introduced local names, we cannot bind notations to
them prior to this theorem. Hence, if we want notations, what we really need are
canonical names for these components. This is easily accomplished with single-
field type classes containing one component each, which we will call operational
type classes3:

Class Equiv A := equiv: relation A.
Class SemiGroupOp A := sg op: A → A → A.

Infix ”=” := equiv: type scope.
Infix ”&” := sg op (at level 50, left associativity).

We use & here and reserve the notation ∗ for (semi)ring multiplication.
As an aside, we note that the distinction between the class field name and the

infix operator notation bound to it is really just a mildly awkward Coq artifact.
In Haskell, where operators can themselves be used as names, there would be no
need to have the equiv and sg op names in addition to the operator ‘names’.

If we now retype SemiGroup as:

Π (G: Type) (e: Equiv G) (op: SemiGroupOp G), Prop

then we can declare the theorem with:

Theorem example G e op {P: SemiGroup G e op}:
Π x y z, x & y & z = z & y & x.

This works because instance resolution, invoked by the use of = and &, will find
e and op, respectively. Hence, the above is really

Theorem example G e op {P: SemiGroup G e op}:
Π x y z, equiv e (sg op op (sg op op x y) z) (sg op op (sg op op z y) x).

3 These single-field type classes are used in the same way in the Clean standard li-
brary [8].
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where e and the ops are filled in by instance resolution.
At this point, a legitimate worry might be that the Equiv/SemiGroup classes

and their equiv/sg op projections imply constant construction and deconstruc-
tion of records, harming the simplicity and flexibility of the predicate approach
that we are trying so hard to preserve. No such construction and destruction
takes place, however, because type classes with only a single field are not desug-
ared into an actual record with field projections the way classes with any other
number of fields are. Instead, both class itself and its field projection are de-
fined as the identity function with a fancy type. Thus, the introduction of these
canonical names is essentially free; the structure predicate’s new type reduces
straight back to what it was before.

A remaining eyesore in the theorem declaration is the enumeration of e and
op. To remove these, we use a new parameter declaration feature called implicit
generalization, introduced in Coq specifically to support type classes. Using im-
plicit generalization, we can write:

Theorem example ‘{SemiGroup G}: Π x y z: G, x & y & z = z & y & x.

The backtick tells Coq to insert implicit declarations of further parameters to
SemiGroup G, namely those declared as e and op above. It further lets us omit
a name for the SemiGroup G parameter itself as well. All of these will be given
automatically generated names that we will never refer to.

Thus, we have reached the mathematical ideal we aimed for.
While we are on the topic of implicit generalization, we mention one inade-

quacy concerning their current implementation that we feel should be addressed
for the facility to be a completely satisfying solution. While the syntax already
supports variants (not shown above) that differ in how exactly different kinds
of arguments are inferred and/or generalized, there is no support to have an
argument be “inferred if possible, generalized otherwise”. We have found that
the need for such a policy arises naturally when declaring a parameter of class
type in a context where some of its components are already available, while oth-
ers are to be newly introduced. The current workaround in these cases involves
providing names for components that are then never referred to, which is a bit
awkward.

One aspect of the predicate approach we have not mentioned thus far is
that in proofs parameterized by abstract structures, all components become
hypotheses in the context. For the example theorem above, the context looks
like:

G: Type
e: Equiv G
op: SemiGroupOp G
P: SemiGroup G e op

We are not particularly worried about overly large contexts, especially because
most of the ‘extra’ hypotheses we have compared to bundled approaches are
declarations of relations, operators, and constants, which are all in some sense
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inert with respect to proof search. Hence, we do not foresee problems with large
contexts for any but the most complex formalizations.

4.1 Implicit syntax-directed algorithm composition

Before we proceed with a discussion of the algebraic hierarchy based on predicate
classes and operational classes, we briefly highlight one specific operational type
class because we will use it later and because it is a particularly nice illustration
of another neat application of operational type classes. The operation in question
is that of deciding a proposition:

Class Decision (P: Prop): Type := decide: sumbool P (¬ P).

Here, sumbool is just the (informative) sum of proofs.
Decision is a very general-purpose type class that also works for predicates.

For instance, to declare a parameter expressing decidability of, say, (setoid)
equality on a type X, we write: ‘{Π a b: X, Decision (a = b)}. To then use this
(unnamed) decider to decide a particular equality, we simply say decide (x = y),
and instance resolution will resolve the decider we declared.

With Decision as a type class, we can very easily define composite deciders
for things like conjunctions and quantifications over (finite) domains:

Instance decide conj ‘{Decision P} ‘{Decision Q}: Decision (P ∧ Q).

With these in place, we can just say decide (x = y ∧ p = q) and let instance res-
olution automatically compose a decision procedure that can decide the specified
proposition. This style of syntax-directed implicit composition of algorithms is
very convenient and highly expressive.

5 The algebraic hierarchy

We have developed an algebraic hierarchy composed entirely out of predicate
classes and operational classes as described in the previous section. For instance,
our semiring interface looks as follows:

Class SemiRing A {e: Equiv A}
{plus: RingPlus A} {mult: RingMult A}
{zero: RingZero A} {one: RingOne A}: Prop :=
{ semiring mult monoid:> CommutativeMonoid A (op:=mult)(unit:=one)
; semiring plus monoid:> CommutativeMonoid A (op:=plus)(unit:=zero)
; semiring distr:> Distribute mult plus
; semiring left absorb:> LeftAbsorb mult zero }.

All of Equiv, RingPlus, RingMult, RingZero, and RingOne are operational (single-
field) classes, with bound notations =, +, ∗, 0, and 1, respectively.

Let us briefly highlight some additional aspects of this style of structure
definition in more detail.
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Fields declared with :> are registered as hints for instance resolution, so that
in any context where (A, =, +, 0, ∗, 1) is known to be a SemiRing, (A, =, +, 0)
and (A, =, ∗, 1) are automatically known to be CommutativeMonoids (and so
on, transitively, because instance resolution is recursive). In our hierarchy, these
substructures by themselves establish the following inheritance diagram:

SemiGroup

Setoid

Monoid

CommutativeMonoid

Group

AbGroup

SemiRing Ring

IntegralDomain Field

However, we can easily add additional inheritance relations by declaring cor-
responding class instances. For instance, while our Ring class does not have a
SemiRing field, the following instance declaration has the exact same effect for
the purposes of instance resolution (at least once proved, which is trivial):

Instance ring as semiring ‘{Ring R}: SemiRing R.

Thus, axiomatic structural properties and inheritance have precisely the same
status as separately proved structural properties and inheritance, reflecting nat-
ural mathematical ideology. Again, contrast this with bundled approaches, where
axiomatic inheritance relations determine projection paths, and where additional
inheritance relations require rebundling and lead to additional and ambiguous
projection paths for the same operations.

The declarations of the two inherited CommutativeMonoid structures in SemiRing
nicely illustrate how predicate classes naturally support not just multiple inher-

itance, but overlapping multiple inheritance, where the inherited structures may
share components (in this case carrier and equivalence relation). The carrier A,
being an explicit argument, is specified as normal. The equivalence relation, be-
ing an implicit argument of class type, is resolved automatically to e. The binary
operation and constant would normally be automatically resolved as well, but we
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override the inference mechanism locally using Coq’s existing named argument
facility (which is only syntactic sugar of the most superficial kind) in order to ex-
plicitly pair multiplication with 1 for the first CommutativeMonoid substructure,
and addition with 0 for the second CommutativeMonoid substructure. Again, con-
trast this with type system extensions such as Matita’s manifest records, which
are required to make this work when the records bundle components such as op
and unit as fields instead of parameters.

Since CommutativeMonoid indirectly includes a SemiGroup field, which in turn
includes a Equivalence field, having a SemiRing proof means having two distinct
proofs that the equality relation is an equivalence. This kind of redundant knowl-
edge ()which arises naturally) is never a problem in our setup, because the use
of operational type classes ensures that terms composed of algebraic operations
and relations never refer to structure proofs. We find that this is a tremendous
relief compared to approaches that do intermix the two and where one must be
careful to ensure that such terms refer to the right proofs of properties. There,
even strong proof irrelevance (which would make terms convertible that differ
only in what proofs they refer to) would not make these difficulties go away en-
tirely, because high-level tactics that rely on quotation of terms require syntactic
identity (rather than ‘mere’ convertibility) to recognize identical subterms.

Because predicate classes only provide contextual information and are insu-
lated from the actual algebraic expressions, their instances can always be kept
entirely opaque—only their existence matters. Together, these properties largely
defuse an argument occasionally voiced against type classes concerning perceived
unpredictability of instance resolution. While it is certainly true that in contexts
with redundant information it can become hard to predict which instance of a
predicate class will be found by proof search, it simply does not matter which one
is found. Moreover, for operational type classes the issue rarely arises because
their instances are not nearly as abundant.

We use names for properties like distributivity and absorption, because these
are type classes as well (which is why we declare them with :>). It has been our
experience that almost any generic predicate worth naming is worth representing
as a predicate type class, so that its proofs will be resolved as instances behind
the scenes whenever possible. Doing this consistently minimizes administrative
noise in the code, bringing us closer to ordinary mathematical vernacular. In-
deed, we believe that type classes are an elegant and apt formalization of the
seemingly casual manner in which ordinary mathematical presentation assumes
implicit administration and use of a ‘database’ of properties previously proved.
Much more so than the existing canonical structures facility, because canoni-
cal structures can only be used with bundled representations, which we argued
against in section 3.

The operational type classes used in SemiRing for zero, one, multiplication
and addition, are the same ones used by Ring and Field (not shown). Thus, the
realization that a particular semiring is in fact a ring or field has no bearing
on how one refers to the operations in question, which is as it should be. The
realization that a particular semigroup is part of a semiring does call for a new
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(canonical) name, simply because of the need for disambiguation. The intro-
duction of these additional names for the same operation is quite harmless in
practice, because canonical names established by operational type class fields
are identity functions, so that in most contexts the distinction reduces away
instantly.

The hierarchy of predicate classes for the abstract structures themselves is
mirrored by a hierarchy of predicate classes for morphisms. For instance:

Context ‘{Monoid A} ‘{Monoid B}.

Class Monoid Morphism (f: A → B) :=
{ monmor from: Monoid A
; monmor to: Monoid B
; monmor sgmor:> SemiGroup Morphism f
; preserves mon unit: f mon unit = mon unit }.

Some clarification is in order to explain the role of the Context declaration
of the two monoids. While Monoid Morphism seemingly depends on monoid-ness
proofs (which would be a gross violation of our idiom), in fact it is only param-
eterized on the monoid components declared through implicit generalization of
the Monoid declarations, because it only refers to those. Here, we use declara-
tions of predicate class parameters merely as convenient shorthands to declare
their components.

Notice that f is not made into an operational type class. The reason for this
is that the role of f is analogous to the carrier type in the previous predicate
class definitions, in that it serves as the primary identification for the structure,
and should therefore not be inferred.

The monmor to and monmor from fields are not an absolute necessity, but
eliminate the need for theorems to declare Monoid parameters when they already
declare Monoid Morphism parameters. This is an instance where we can freely
posit structural properties without worrying about potential problems when such
information turns out to be redundant in contexts where the source and target
of the morphism are already known to be Monoids.

Unfortunately, there is actually one annoying wrinkle here, which will also
explain why we do not register these two fields as instance resolution hints (by
declaring them with :>). What we really want these fields to express is “if in a
certain context we know something to be a Monoid Morphism, then realize that
the source and target are Monoids”. However, the current instance resolution
implementation has little support for this style of forward reasoning, and is really
primarily oriented on backward reasoning: had we registered monmor to and
monmor from as instance resolution hints, we would in fact be saying “if trying
to establish that something is a Monoid, then try finding a Monoid Morphism to
or from it”, which quickly degenerates into a wild goose chase. We will return
to this point in section 11.

Having described the basic principles of our approach, in the remainder of
this paper we tour other parts of our development, further illustrating what a
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state of the art formal development of foundational mathematical structures can
look like with a modern proof assistant based on type theory.

These parts were originally motivated by our desire to cleanly express inter-
faces for basic numeric data types such as N and Z in terms of their categorical
characterization as initial objects in the categories of semirings and rings, re-
spectively. Let us start, therefore, with basic category theory.

6 Category theory

Following our idiom, we introduce operational type classes for the components
of a category:

Class Arrows (O: Type): Type := Arrow: O → O → Type.
Class CatId O ‘{Arrows O} := cat id: ‘(x −→ x).
Class CatComp O ‘{Arrows O} :=

comp: Π {x y z}, (y −→ z) → (x −→ y) → (x −→ z).

Infix ”−→ ” := Arrow (at level 90, right associativity).
Infix ”�” := comp (at level 40, left associativity).

(The categorical arrow is distinguished from the primitive function space arrow
by its length.)

With these in place, our type class for categories follows the usual type-
theoretical definition of a category [29]:

Class Category (O: Type) ‘{Arrows O} ‘{Π x y: O, Equiv (x −→ y)}
‘{CatId O} ‘{CatComp O}: Prop :=
{ arrow equiv:> Π x y, Setoid (x −→ y)
; comp proper:> Π x y z, Proper (equiv ⇒ equiv ⇒ equiv) comp
; comp assoc w x y z (a: w −→ x) (b: x −→ y) (c: y −→ z):

c � (b � a) = (c � b) � a
; id l ‘(a: x −→ y): cat id � a = a
; id r ‘(a: x −→ y): a � cat id = a }.

This definition is based on the 2-categorical idea of having equality only on
arrows, not on objects.

Initiality, too, is defined by a combination of an operational and a predicate
class:

Context ‘{Category X}.
Class InitialArrows (x: X): Type := initial arrow: Π y, x −→ y.
Class Initial (x: X) ‘{InitialArrows x}: Prop :=

initial arrow unique: Π y (a: x −→ y), a = initial arrow y.

The operational class InitialArrows designates the arrows that originate from an
initial object x by virtue of it being initial. The Initial class itself further requires
these “initial arrows” to be unique. Having InitialArrows as an operational type
class means that we can always simply say initial arrow y whenever y is known
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to be an object in a category known to have an initial object (where ‘known’
should be read as “can be determined by instance resolution”).

Strictly speaking the above is all we need in order to continue with the story
line leading up to the numerical interfaces, but just to give a further taste of
what category theory with this setup looks like in practice, we briefly mention
a few more definitions and theorems.

6.1 Functors

In our definition of functors we see the by now familiar refrain once more:

Context ‘{Category C} ‘{Category D} (map obj: C → D).

Class Fmap: Type :=
fmap: Π {v w: C}, (v −→ w) → (map obj v −→ map obj w).

Class Functor ‘{Fmap}: Prop :=
{ functor from: Category C
; functor to: Category D
; functor morphism:> Π a b: C, Setoid Morphism (@fmap a b)
; preserves id: ‘(fmap (cat id: a −→ a) = cat id)
; preserves comp ‘(f: y −→ z) ‘(g: x −→ y):

fmap (f � g) = fmap f � fmap g }.

We ought to say a few words about our use of fmap. The usual mathematical
notational convention for functor application is to use the name of the functor to
refer to both its object map and its arrow map, relying on additional conventions
regarding object/arrow names for disambiguation: F x and F f map an object and
an arrow, respectively, because x and f are conventional names for objects and
arrows, respectively.

In Coq, for a term F to function as though it had two different types simul-
taneously (namely the object map and the arrow map), there must either (1)
be coercions from the type of F to either function, or (2) F must be (coercible
to) a single function that is able to consume both object and arrow arguments.
In addition to not being supported by Coq, option (1) would violate our policy
of leaving components unbundled. For (2), if it could be made to work at all, F
would need a pretty egregious type considering that arrow types are indexed by
objects, and that the type of the arrow map

Π x y, (x −→ y) → (F x −→ F y)

must refer to the object map.
We feel that these issues are not limitations of the Coq system, but merely

reflect the fact that notationally identifying these two distinct and interdepen-
dent maps is an abuse of notation of sufficient severity to make it ill-suited to
a formal development where software engineering concerns apply. Hence, we do
not adopt this practice, and use fmap F (name taken from the Haskell standard
library) to refer to the arrow map of a functor F.
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6.2 Natural transformations and adjunctions

We introduce a convenient notation for the type of the computational content
of a natural transformation between two functors:

Notation ”F =⇒ G” := (Π x, F x −→ G x).

Now assume the following context:

Context ‘{Category C} ‘{Category D}
‘{Functor (F: C → D)} ‘{Functor (G: D → C)}.

The naturality property is easy to write:

Class NaturalTransformation (η: F =⇒ G): Prop :=
{ naturaltrans from: Functor F
; naturaltrans to: Functor G
; natural: Π ‘(f: x −→ y), η y � fmap F f = fmap G f � η x }.

Adjunctions can be defined in different ways. A nice symmetric definition is
the following:

Class Adjunction (φ: Π ‘(F c −→ d), (c −→ G d)): Prop :=
{ adjunction left functor: Functor F
; adjunction right functor: Functor G
; natural left ‘(f: d −→ d’) c: (fmap G f �) ◦ φ = φ(c:=c) ◦ (f �)
; natural right ‘(f: c’ −→ c) d: (� f) ◦ φ(d:=d) = φ ◦ (� fmap F f) }.

An alternative definition is the following:

Class AltAdjunction (η: id =⇒ G ◦ F) (φ: Π ‘(f: c −→ G d), F c −→ d): Prop
:=

{ alt adjunction natural unit: NaturalTransformation η

; alt adjunction factor: Π ‘(f: c −→ G d),
is sole ((f =) ◦ (� η c) ◦ fmap G) (φ f) }.

Formalizing the (nontrivial) proof that these two definitions are equivalent pro-
vides a nice test for our definitions. As a first step, we have constructed the unit
and co-unit of the adjunction, thus proving MacLane’s Theorem 1. We have
concisely and closely followed his proof [19].

7 Universal algebra

To specify the natural numbers and the integers as initial objects in the cat-
egories of semirings and rings, respectively, definitions of these categories are
needed. While one could define both of them manually, greater economy can
be achieved by recognizing that both semirings and rings can be defined by
equational theories, for which varieties can be defined generically. Varieties are
categories consisting of models for a fixed theory with homomorphisms between
them.
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To this end, we have formalized some of the theory of multisorted universal
algebra and equational theories. We chose not to revive existing formalizations [9,
14] of universal algebra, because an important aim for us has been to find out
what level of elegance, convenience, and integration can be achieved by leveraging
the state of the art in Coq facilities (of which type classes are the most important
example).

7.1 Signatures and algebras

A multisorted signature enumerates sorts, operations, and specifies the ‘types’
of the operations as non-empty lists of sorts, where the final element denotes the
result type:

Inductive Signature: Type :=
{ sorts: Set
; operation:> Set
; operation type:> operation → ne list sorts }.

Given an interpretation of the sorts (mapping each symbolic sort to a carrier),
an interpretation for the operations is easily written as an operational type class:

Variables (σ: Signature) (carriers: sorts σ→ Type).

Definition op type: ne list (sorts σ) → Type := fold (→ ) ◦ map carrier.

Class AlgebraOps (σ: Signature) (carriers: sorts σ → Type)
:= algebra op: Π o: operation σ, op type carriers (σ o).

Because our carriers will normally be equipped with a setoid equality, we further
define the predicate class Algebra, stating that each of the operations respects
the setoid equality on the carriers:

Class Algebra ‘{Π a, Equiv (carriers a)} ‘{AlgebraOps σ carriers}: Prop :=
{ algebra setoids:> Π a, Setoid (carriers a)
; algebra propers:> Π o: σ, Proper (=) (algebra op o) }.

The (=) referred to in algebra propers is an Equiv instance expressing setoid-
respecting extensionality for the function types generated by op type.

We do not unbundle Signature because it represents a triple that will always
be specifically constructed for subsequent use with the universal algebra facilities.
We have no ambition to recognize signature triples “in the wild”, nor will we
ever talk about multiple signatures sharing sort- or operation enumerations.

7.2 Equational theories and varieties

To characterize structures such as semirings and rings, we need equational the-
ories, consisting of a signature together with laws (represented by a predicate
over equality entailments):
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Record EquationalTheory :=
{ eqt sig:> Signature
; eqt laws:> EqEntailment eqt sig → Prop }.

An EqEntailment consists of premises and a conclusion represented by an induc-
tively defined statement grammar, which in turn uses an inductively defined term
grammar. A detailed discussion of these definitions and the theory developed for
them is beyond the scope of this paper.

We now introduce a predicate class designating algebras that satisfy the laws
of an equational theory:

Class InVariety
(et: EquationalTheory) (carriers: sorts et → Type)
{e: Π a, Equiv (carriers a)} ‘{AlgebraOps et carriers}: Prop :=
{ variety algebra:> Algebra et carriers
; variety laws: Π s, eqt laws et s → (Π vars, eval stmt et vars s) }.

What remains is to show that carrier sets together with Equivs and AlgebraOps
satisfying InVariety for a given EquationalTheory do indeed form a Category (the

‘variety’). Since we need a type for the objects in the Category, at this point we
have no choice but to bundle components and proof together in a record:

Variable et: EquationalTheory.

Record ObjectInVariety: Type := object in variety
{ variety carriers:> sorts et → Type
; variety equiv: Π a, Equiv (variety carriers a)
; variety op: AlgebraOps et variety carriers
; variety proof: InVariety et variety carriers }.

The arrows will be homomorphisms, which are also defined generically for any
equational theory:

Instance: Arrows Object := λ X Y: Object ⇒ sig (HomoMorphism et X Y).

The instance definitions for identity arrows, arrow composition, arrow se-
toid equality, and composition propriety, are all trivial, as is the final Category
instance:

Instance: Category ObjectInVariety.

In addition to this variety category, we also have categories of lawless alge-
bras, as well as forgetful functors from the former to the latter, and from the
latter to the category of setoids.

7.3 The first homomorphism theorem

To give a further taste of what universal algebra in our development looks like,
we consider the definitions involved in the first homomorphism theorem [22] in
more detail:
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Theorem 1 (First homomorphism theorem). If A and B are algebras, and
f is a homomorphism from A to B, then the equivalence relation defined by
a ∼ b if and only if f(a) = f(b) is a congruence on A, and the algebra A/∼ is
isomorphic to the image of f , which is a subalgebra of B.

A set of relations e (one for each sort) is a congruence for an existing algebra
if (1) e respects that algebra’s existing setoid equality, and (2) the operations
with e again form an algebra (namely the quotient algebra):

Context ‘{Algebra σ A}.
Class Congruence (e: Π s: sorts σ, relation (v s)): Prop :=
{ congruence proper:> Π s, Proper (equiv ⇒ equiv ⇒ iff) (e s)
; congruence quotient:> Algebra σ v (e:=e) }.

We have proved that this natural and economical type-theoretic formulation
that leverages our systematic integration of setoid equality is equivalent to the
traditional definition of congruences as relations that, represented as sets of pairs,
form a subalgebra of the product algebra.

For the homomorphism theorem, we begin by declaring our dramatis per-
sonae:

Context ‘{Algebra σ A} ‘{Algebra σ B} ‘{HomoMorphism σ A B f}.

With ∼ defined as described, the first part of the proof is simply the definition
of the following instance:

Instance co: Congruence σ (∼).

For the second part, we describe the image of f as a predicate over B, and
show that it is closed under the operations of the algebra:

Definition image s (b: B s): Type := sigT (λ a ⇒ f s a = b).

Instance: ClosedSubset image.

The sigT type constructor is a Type-sorted existential quantifier. ClosedSubset is
defined elsewhere as:

Context ‘{Algebra σ A} (P: Π s, A s → Type).
Class ClosedSubset: Type :=
{ subset proper: Π s x x’, x = x’ → iffT (P s x) (P s x’)
; subset closed: Π o, op closed (algebra op o) }.

Here, op closed is defined by recursion over the symbolic operation types.
The reason we define image and ClosedSubset in Type rather than in Prop is

that since the final goal of the proof is to establish an isomorphism in the category
of σ-algebras (where arrows are algebra homomorphisms), we will eventually
need to map elements in the subalgebra defined by image back to their pre-
image in A.

However, there are contexts (in other proofs) where Prop-sorted construction
of subalgebras really is appropriate. Unfortunately, Coq’s universe polymor-
phism is not yet up to the task of letting us use a single set of definitions to
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handle both cases. In particular, there is no universe polymorphism for defini-
tions (as opposed to inductive definitions) yet. We will return to this point later.
In our development, we have two sets of definitions, one for Prop and one for
Type, resulting in duplication of about a hundred lines of code.

For the main theorem, we now bundle the quotient algebra and the subalgebra
into records akin to ObjectInVariety from section 7.2:

Definition quot obj: algebra.Object σ:=
algebra.object σA (algebra equiv:=(∼)).

Definition subobject: algebra.Object σ :=
algebra.object σ(ua subalgebraT.carrier image).

Here, algebra is the module defining the bundled algebra record Object with
constructor object. The module ua subalgebraT constructs subalgebras.

Finally, we define a pair of arrows between the two and show that these
arrows form an isomorphism:

Program Definition back: subobject −→ quot obj
:= λ X ⇒ projT1 (projT2 X).

Program Definition forth: quot obj −→ subobject
:= λ a X ⇒ existT (f a X) (existT X (reflexivity )).

Theorem first iso: iso arrows back forth.

The Program command generates proof obligations (not shown) expressing that
these two arrows are indeed homomorphisms. The proof of the theorem itself is
trivial.

8 Numerical interfaces

EquationalTheory’s for semirings and rings are easy to define, and so from sec-
tion 7.2 we get corresponding categories in which we can postulate initial objects:

Class Naturals (A: ObjectInVariety semiring theory) ‘{InitialArrow A}: Prop :=
{ naturals initial:> Initial A }.

While succinct, this definition is not a satisfactory abstraction because the use
of ObjectInVariety for the type of the A component ‘leaks’ the fact that we used
this one particular universal algebraic construction of the category, which is just
an implementation choice. Furthermore, this definition needs an additional layer
of class instances to relate it to the SemiRing class from our algebraic hierarchy.

What we really want to say is that an implementation of the natural numbers
ought to be an a-priori SemiRing that, when bundled into an ObjectInVariety
semiring theory, is initial in said category. This is a typical example where con-
version functions between concrete classes such as SemiRing and instantiations
of more abstract classes such as InVariety and Category are required in our de-
velopment in order to leverage and apply concepts and theory defined for the
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latter to the former. While sometimes a source of some tension in that these
conversions are not yet applied completely transparently whenever needed, the
ability to move between “down to earth” and “high in the sky” perspectives on
the same abstract structures has proved invaluable in our development, and we
will give more examples of this in a moment.

Taking these conversion functions for granted, we will also need a “down to
earth” representation of the initiality arrows if we are to give a SemiRing-based
definition of the interface for natural numbers. Once again, we introduce an
operational type class to represent this particular component:

Class NaturalsToSemiRing (A: Type) :=
naturals to semiring: Π B ‘{RingMult B} ‘{RingPlus B} ‘{RingOne B}

‘{RingZero B}, A → B.

The instance for nat is defined as follows:

Instance nat to semiring: NaturalsToSemiRing nat :=
λ ⇒ fix f (n: nat) := match n with 0 ⇒ 0 | S m ⇒ f m + 1 end.

To use NaturalsToSemiRing with Initial, we define an additional conversion
instance that takes a NaturalsToSemiRing along with a proof showing that it
yields SemiRing Morphisms, and builds an InitialArrow instance out of it. This
conversion instance in turn invokes another conversion function that translates
concrete SemiRing Morphism proofs into univeral algebra Homomorphisms instan-
tiated with the semiring signature, which make up the arrows in the category.

With these instances in place, we can now define the improved natural num-
bers specification:

Context ‘{SemiRing A} ‘{NaturalsToSemiRing A}.
Class Naturals: Prop :=
{ naturals ring:> SemiRing A
; naturals to semiring mor:> Π ‘{SemiRing B},

SemiRing Morphism (naturals to semiring A B)
; naturals initial:> Initial (bundle semiring A) }.

Basing theory and programs on this abstract interface instead of on specific
implementation (such as the ubiquitous Peano naturals nat in the Coq standard
library) is not only cleaner mathematically, but also facilitates easy swapping
between implementations. And this benefit is far from theoretical, as diverse
representations of the natural numbers are abound; for instance, unary, binary,
factor multisets, and arrays of native machine words.

Since initial objects in categories are isomorphic, we can easily derive that
naturals to semiring gives isomorphisms between different Naturals implementa-
tions:

Lemma iso naturals ‘{Naturals A} ‘{Naturals B}:
Π a: A, naturals to semiring B A (naturals to semiring A B a) = a.

This is very useful, because some properties of and operations on naturals are
more easily proved, respectively defined, for concrete implementations (such as
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nat) and then lifted to the abstract Naturals interface so that they work for arbi-
trary implementations. For example, while showing decidability for an arbitrary
Naturals implementation directly is tricky, it is very easy to show decidability
for nat. Using iso naturals, the latter can be very straightforwardly used to im-
plement the former.

To lift properties such as injectivity of partially applied addition and multipli-
cation from nat to arbitrary Naturals implementations, we take a longer detour.
As part of our universal algebra theory, we have proved that proofs of statements
in the language of an equational theory can be transferred between isomorphic
implementations. Hence, we can transfer proofs of such statements between im-
plementations of Naturals, requiring only that we reflect the concrete statement
(expressed in terms of the operational type classes) to a symbolic statement in
the language of semirings. We intend to eventually make this reflection com-
pletely automatic using type class based quotation techniques along the lines of
those described in Section 9.

Thanks to our close integration of universal algebra we can actually obtain
a Naturals implementation completely automatically, by invoking a generic con-
struction of initial models built from the closed term algebra for the signature
along with a setoid equality expressing the congruence closure of the identities
in the equational theory. However, this implementation is not very useful, nei-
ther in terms of efficiency, nor as a canonical implementation (to be used as the
basis for theory and programs that are then subsequently lifted). For example,
defining a normalization procedure to decide the aforementioned setoid equality
is far harder than deciding equality for, say, nat.

8.1 Specialization

The generic Decision instance for Naturals equality implemented by mapping to
nat will typically be far less efficient than a specialized implementation for a
particular representation of the natural numbers. Fortunately, with Coq’s type
classes it is no problem for instances overlapping in this way to co-exist. We can
even deprioritize the generic instance so that instance resolution will always pick
the specialization when the representation is known.

To permit a generic function operating on naturals to take advantage of
specialized operations, we simply introduce an additional instance parameter:

Definition calculate things ‘{Naturals N} ‘{Π n m: N, Decision (n = m)}
(a b: nat): ... := ... decide (a = b) ... .

Without the Decision parameter calculate things would be equally correct, but
could be less efficient. Thus, by this scheme one can start by writing correct-but-
possibly-inefficient programs that make use of generic operation instances, and
then selectively improve efficiency of key algorithms simply by adding additional
operational type class instance parameters where profiling shows it to make a
significant difference, without changing their definition body.
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Other examples of operations on natural numbers that are sensible choices
for specialization include: subtraction, distance, and division and multiplication
by 2.

8.2 Integers, rationals, and polynomials

The abstract interface for integers is completely analogous to the one for natural
numbers:

Context ‘{Ring A} ‘{IntegersToRing A}.
Class Integers: Prop :=
{ integers ring:> Ring A
; integers to ring mor:> Π ‘{Ring B},

Ring Morphism (integers to ring A B)
; integers initial:> Initial (ring.object A) }.

The rationals are characterized as a decidable field with an injective ring
morphism from a canonical implementation of the integers and a surjection of
fractions of such integers:

Context ‘{Field A} ‘{Π x y: A, Decision (x = y)} {inj inv}.
Class Rationals: Prop :=
{ rationals field:> Field A
; rationals frac: Surjective

(λ p ⇒ integers to ring (Z nat) A (fst p) ∗
/ integers to ring (Z nat) A (snd p)) (inv:=inj inv)

; rationals embed ints: Injective (integers to ring (Z nat) A) }.
Here, Z is an Integers implementation paramerized by a Naturals implementation,
for which we just take nat. The choice of Z nat here is immaterial; we could have
picked another, or even a generic, implementation of Integers, but doing so would
provide no benefit.

In our development we prove that the standard library’s default rationals
do indeed implement Rationals, as do implementations of the QType module in-
terface. While the latter is rather ad-hoc from a theoretical perspective, it is
nevertheless of great practical interest because it is used for the very efficient
BigQ rationals based on machine integers [1]. Hence, theory and programs de-
veloped on our Rationals interface applies and can make immediate use of these
efficient rationals. We plan to rebase the computable real number implementa-
tion [23] on this interface, precisely so that it may be instantiated with efficient
implementations like these.

We also plan to provide an abstract interface for polynomials as a free com-
mutative algebra. This would unify existing implementations such as coefficient
lists and Bernstein polynomials; see [33] for the latter.

9 Quoting with type classes

A common need when interfacing generic theory and utilities developed for al-
gebraic structures (such as normalization procedures) with concrete instances
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of these structures is to take a concrete expression or statement in a model of
a particular algebraic structure, and translate it to a symbolic expression or
statement in the language of the algebra’s signature, so that its structure can be
inspected.

Traditionally, proof assistants such as Coq have provided sophisticated tac-
tics or built-in commands to support such quoting. Unification hints [2], a very
general way of facilitating user-defined extensions to term and type inference,
can be used to semi-automatically build quote functions without dropping to a
meta-level.4 This feature is absent from Coq, but fortunately type classes also
allow us to do this, as we will now show.

For ease of presentation we show only a proof of concept for a very concrete
language. We are currently working to integrate this technique with our existing
universal algebra infrastructure, in particular its data types for algebraic terms.

For the present example, we define an ad-hoc term language for monoids

Inductive Expr (V: Type) := Mult (a b: Expr V) | One | Var (v: V).

The expression type is parameterized over the set of variable indices. Below we
use an implicitly defined heap of such variables. Hence, we diverge from [2], which
uses nat for variable indices, thereby introducing a need for dummy variables for
out-of-bounds indices.

Suppose now that we want to quote nat expressions built from 1 and mul-
tiplication. To describe the relation we want the symbolic expression to have
to the original expression, we first define how symbolic expressions evaluate to
values (given a variable assignment):

Definition Value := nat.
Definition Env V := V → Value.

Fixpoint eval {V} (vs: Env V) (e: Expr V): Value :=
match e with
| One ⇒ 1
| Mult a b ⇒ eval vs a ∗ eval vs b
| Var v ⇒ vs v
end.

We can now state our goal: given an expression of type nat, we seek to
construct an Expr V for some appropriate V along with a variable assignment,
such that evaluation of the latter yields the former. Because we will be doing
this incrementally, we introduce a few simple variable “heap combinators”:

Definition novars: Env False := False rect .
Definition singlevar (x: Value): Env unit := λ ⇒ x.
Definition merge {A B} (a: Env A) (b: Env B): Env (A+B) :=

λ i ⇒ match i with inl j ⇒ a j | inr j ⇒ b j end.

4 Gonthier provides similar functionality by ingeniously using canonical structures.
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These last two combinators are the ‘constructors’ of an implicitly defined sub-
set of Gallina terms, representing heaps, for which we will implement syntactic
lookup with type classes in a moment. The heap can also be defined explicitly,
with no essential change in the code.

With these, we can define the primary ingredient, the Quote class:

Class Quote {V} (l: Env V) (n: Value) {V’} (r: Env V’): Type :=
{ quote: Expr (V + V’)
; eval quote: eval (merge l r) quote = n }.

We can think of Quote as the type for a family of Prolog-like syntax-directed
resolution functions, which will take as input V and l representing previously
encountered holes (opaque subexpressions that could not be destructured fur-
ther) and their values, along with a concrete term n to be quoted. Their ‘output’
will consist not only of the fields in the class, but also of V’ and r represent-
ing additional holes and their values. Hence, a type class constraint of the form
Quote x y z should be read as “quoting y with existing heap x generates new
heap z”.

The Quote instance for 1 illustrates the basic idea:

Instance quote one V (v: Env V): Quote v 1 novars := { quote := One }.

The expression ‘1’ can be quoted in any context (V, v), introduces no new vari-
ables, and the symbolic term representing it is just One. The eval quote field is
turned into a trivial proof obligation.

The Quote instance for multiplication is a little more subtle, but really only
does a bit of heap juggling:

Instance quote mult V (v: Env V) n V’ (v’: Env V’) m V’’ (v’’: Env V’’)
‘{Quote v n v’} ‘{Quote (merge v v’) m v’’}:

Quote v (n ∗ m) (merge v’ v’’) :=
{ quote :=

Mult (map var shift (quote n)) (map var sum assoc (quote m)) }.

These two instances specify how 1 and multiplications are to be quoted,
but what about other expressions? For these, we want to distinguish two kinds:
expressions we have seen before, and those we have not. To make this distinction,
we need to be able to look up expressions in variable heaps to see if they’re
already there. Importantly, we must do this not by comparing the values they
evaluate to, but by actually browsing the term denoting the variable heap —
that is, a composition from novars, singlevar, and merge. This, too, is a job for a
type class:

Class Lookup {A} (x: Value) (v: Env A) := { key: A; key correct: v key = x }.

Our first Lookup instance states that x can be looked up in singlevar x:

Instance singlevar lookup (x: Value): Lookup x (singlevar x) := { key := tt }.

Finally, if an expression can be looked up in a pack, then it can also be looked
up when that pack is merged with another pack:
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Context (x: Value) {A B} (va: Env A) (vb: Env B).

Instance lookup left ‘{Lookup x va}: Lookup x (merge va vb)
:= { key := inl (key x va) }.

Instance lookup right ‘{Lookup x vb}: Lookup x (merge va vb)
:= { key := inr (key x vb) }.

With Lookup, we can now define a Quote instance for previously encountered
expressions:

Instance quote old var V (v: Env V) x {Lookup x v}:
Quote v x novars | 8 := { quote := Var (inl (key x v)) }.

If none of the Quote instances defined so far apply, the term in question is a
newly encountered hole. For this case we define a catch-all instance with a low
priority, which yields a singleton heap containing the expression:

Instance quote new var V (v: Env V) x: Quote v x (singlevar x) | 9
:= { quote := Var (inr tt) }.

And with that, we can start quoting:

Goal Π x y (P: Value → Prop), P ((x ∗ y) ∗ (x ∗ 1)).
intros.
rewrite ← eval quote.

The rewrite rewrites the goal to (something that reduces to):

P (eval
(merge novars

(merge (merge (singlevar x) (singlevar y)) (merge novars novars)))
(Mult (Mult (Var (inr (inl (inl ())))) (Var (inr (inl (inr ())))))

(Mult (Var (inr (inl (inl ())))) One)))

The following additional utility lemma lets us quote equalities with a shared
heap (so that an opaque expression that occurs on both sides of the equation is
not represented by two distinct variables):

Lemma quote equality {V} {v: Env V} {V’} {v’: Env V’} (l r: Value)
‘{Quote novars l v} ‘{Quote v r v’}:

let heap := merge v v’ in
eval heap (map var shift quote) = eval heap quote → l = r.

Notice that we have not made any use of Ltac, Coq’s tactic language. Instead,
we have used instance resolution as a unification-based programming language
to steer the unifier into inferring the symbolic quotation.

10 Sequences and universes

Finite sequences are another example of a concept that can be represented in
many different ways: as cons-lists, maps from bounded naturals, array-queues,
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etc. Here, too, the introduction of an abstract interface facilitates implementa-
tion independence.

Mathematically, finite sequences can be characterized as free monoids over
sets. A categorical way of expressing this is in terms of adjunctions. As with the
numeric interfaces, we could fully embrace this perspective, paying no heed to
practicality of implementation and usage, and define a relatively succinct type
class for sequences as follows:

Class PoshSequence
(free: setoid.Object → monoid.Object) ‘{Fmap free}
(singleton: id =⇒ monoid.forget ◦ free)
(extend: ‘((x −→ monoid.forget y) → (free x −→ y))): Prop :=
{ sequence adjunction: AltAdjunction singleton extend
; extend morphism: ‘(Setoid Morphism (extend x y)) }.

Here, monoid.forget is the forgetful functor from monoids to sets.
However, we do care about practicality, and so we will again take a more

concrete perspective, starting with operational type classes for the characteristic
operations:

Context ‘{Functor (seq: Type → Type)}.

Class Extend := extend: Π {x y} ‘{SemiGroupOp y} ‘{MonoidUnit y},
(x → y) → (seq x → y).

Class Singleton := singleton: Π x, x → seq x.

With these, we can define the predicate class for sequences:

Class Sequence
‘{Π a, MonoidUnit (seq a)} ‘{Π a, SemiGroupOp (seq a)}
‘{Π a, Equiv a → Equiv (seq a)} ‘{Singleton} ‘{Extend}: Prop := ...

On top of this interface we can build theory about typical sequence operations
such as maps, folds, their relation to singleton and extend, et cetera. We can also
generically define ‘big operators’ for sums (

∑
) and products (

∏
) of sequences,

and easily show properties like distributivity, all without ever mentioning cons-
lists.

Unfortunately, disaster strikes when, after having defined this theory, we try
to show that regular cons-lists implement the abstract Sequence interface. When
we get to the point where we want to define the Singleton operation, Coq emits
a universe inconsistency error. The problem is that because of the categorical
constructions involved, the theory forces Singleton to inhabit a relatively high
universe level, making it incompatible with lowly list.

Universe polymorphism could in principle most likely solve this problem,
but its current implementation in Coq only supports universe polymorphic in-
ductive definitions, while Singleton is a regular definition. Universe polymorphic
definitions have historically not been supported in Coq, primarily because of
efficiency concerns. However, we have taken up the issue with the Coq devel-
opment team, and they have agreed to introduce the means to let one turn on
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universe polymorphism for definitions voluntarily on a per-definition basis. With
such functionality we could make Singleton universe polymorphic, and hopefully
resolve these problems.

In other places in our development, too, we have encountered universe in-
consistencies that could be traced back to universe monomorphic definitions
being forced into disparate universes (Equiv being a typical example). Hence,
we consider the support for universe polymorphic definitions that is currently
being implemented to be of great importance to the general applicability and
scalability of our approach.

11 Conclusions

While bundling operational and propositional components of abstract structures
into records may seem natural at first, doing so actually introduces many seri-
ous problems. With type classes we avoid these problems by avoiding bundling
altogether.

It has been suggested that canonical structures are more robust because of
their more restricted nature compared to the wild and open-ended proof search
of instance resolution. However, these restrictions force one into bundled repre-
sentations, and moreover, their more advanced usage requires significant inge-
nuity, whereas type class usage is straightforward. Furthermore, wild and open-
ended proof search is harmless for predicate classes for which only existence—not
identity—matters.

Unification hints are a more general mechanism than type classes, and could
provide a more precise account of the interaction between implicit argument
inference and proof search. It is not a great stretch to conjecture that a fruitful
approach might be to use unification hints as the underlying mechanism, with
type classes as an end-user interface encapsulating a particularly convenient
idiom for using them.

There are really only two pending concerns that keeps us from making an
unequivocal endorsement of type classes as a versatile, expressive, and elegant
means of organizing proof developments. The first and lesser of the two is uni-
verse polymorphism for definitions as described in the previous section. The sec-
ond is instance resolution efficiency. In more complex parts of our development
we are now experiencing increasingly serious efficiency problems, despite having
already made sacrifices by artificially inhibiting many natural class instances in
order not to further strain instance resolution. Fortunately, there is plenty of po-
tential for improvement of the current instance resolution implementation. One
source is the vast literature on efficient implementation of Prolog-style resolution,
which the hint-based proof search used for instance resolution greatly resembles.
We emphasize that these efficiency problems only affect type checking; efficiency
of computation using type-checked terms is not affected.

We are currently in the process of retrofitting the rationals interface into
CoRN. In future work we aim to base our development of its reals on an abstract
dense set, allowing us to use the efficient dyadic rationals [7] as a base for exact
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real number computation in Coq [24, 23]. The use of category theory has been
important in these developments.

An obvious topic for future research is the extension from equational logic
with dependent types [10, 25]. Another topic would be to fully, but practically,
embrace the categorical approach to universal algebra [26].

According to coqwc, our development consists of 5660 lines of specifications
and 937 lines of proofs.
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