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Abstract. We present a new formalization of the algebraic hierarchy
in Coq, exploiting its new type class mechanism to make practical a
solution formerly thought infeasible. Our approach addresses both tra-
ditional challenges as well as new ones resulting from our ambition to
build upon this development a library of constructive analysis in which
abstraction penalties inhibiting efficient computation are reduced to a
bare minimum. To support mathematically sound abstract interfaces for
N, Z, and @, our formalization includes portions of category theory and
multisorted universal algebra.

1 Introduction

The development of libraries for formalized mathematics presents many soft-
ware engineering challenges [4, 8], because it is far from obvious how the clean,
idealized concepts from everyday mathematics should be represented using the
facilitities provided by concrete theorem provers and their formalisms, in a way
that is both mathematically faithful and convenient to work with.

For the algebraic hierarchy—a critical component in any library of formalized
mathematics—these challenges include structure inference, handling of multiple
inheritance, idiomatic use of notations, and convenient algebraic manipulation.

Several solutions have been proposed for the Coq theorem prover: dependent
records [7] (a.k.a. telescopes), packed classes [6], and occasionally modules. We
present a new approach based entirely on Coq’s new type class mechanism, and
show how its features together with a key design pattern let us effectively address
the challenges mentioned above.

Since we intend to use this development as a basis for constructive analysis
with practical certified exact real arithmetic, an additional objective and moti-
vation in our design is to facilitate efficient computation. In particular, we want
to be able to effortlessly swap implementations of number representations. Do-
ing this requires that we have clean abstract interfaces, and mathematics tells us
what these should look like: we represent N, Z, and Q as interfaces specifying
an initial semiring, an initial ring, and a field of integral fractions, respectively.

To express these elegantly and without duplication, our development! in-
cludes an integrated formalization of parts of category theory and multi-sorted
universal algebra, all expressed using type classes for optimum effect.

! The sources are available at: http://www.eelis.net/research/math-classes/



2 The Type-Classified Algebraic Hierarchy

Unlike Haskell’s and Isabelle’s second class type classes, Coq’s type classes are
first class: classes and their instances are realized as ordinary record types (“dic-
tionaries”) and registered constants of these types.

We represent each structure in the algebraic hierarchy as a type class. This
immediately leads to the familiar question of which components of the structure
should become parameters of the class, and which should become fields. By far
the most important design choice in our development is the decision to turn all
structural components (i.e. carriers, relations, and operations) into parameters,
keeping only properties as fields. Type classes defined in this way are essentially
predicates with automatically resolved proofs.

Conventional wisdom warns that while this approach is theoretically very
flexible, one risks extreme inconvenience both in having to declare and pass
around all these structural components all the time, as well as in losing notations
(because we no longer project named operations out of records).

These are legitimate concerns that we avoid by exploiting the way Coq type
classes and their support infrastructure work, using operational type classes:
classes with a single field representing a single relation or operation in isolation.
Such classes are treated specially by Coq in being translated to mere definitions
rather than records, with the field projection becoming the identity function.

Class Fquiv A := equiv : relation A.
Infix "=":= equiv (at level 70, no associativity) .

These operational type classes serve to establish canonical names, which not only
lets us bind notations to them, but also makes their declaration and use implicit
in most contexts. For instance, using the following definition of semirings, all
structural parameters (represented by operational classes declared with curly
brackets) will be implicitly resolved by the type class mechanism rather than
listed explicitly whenever we talk about semirings.

Class SemiRing A {e : Equiv A} {plus : RingPlus A} {mult : RingMult A}
{zero : RingZero A} {one : RingOne A} : Prop :=
{semiring_mult_monoid :> Monoid A (op := mult) (unit := one)

; semaring _plus_monoid :> Monoid A (op := plus) (unit := zero)
; semiaring _plus_comm :> Commutative plus

; semaring _mult_comm :> Commutative mult

; semiring _distr :> Distribute mult plus

smult_0_1:Yx,0xz = 0} .

The two key Coq features that make this work are implicit quantification (when
declaring a semiring), and maximally inserted implicit arguments (when stating
that something is a semiring, and when referencing operations and relations).
Both were added specifically to support type classes.

Having argued that the all-structure-as-parameters approach can be made
practical, we enumerate some of the benefits that make it worthwhile.



First, multiple inheritance becomes trivial: SemiRing inherits two Monoid
structures on the same carrier and setoid relation, using ordinary named argu-
ments (rather than dedicated extensions [9]) to achieve “manifest fields”.

Second, because our terms are small and independent and never refer to
proofs, we are invulnerable to concerns about efficiency and ambiguity of pro-
jection paths that plague existing solutions, obviating the need for extensions
like the proposed coercion pullbacks [1].

Third, since our structural type classes are mere predicates, overlap between
their instances is a non-issue. Together with the previous point, this gives us
tremendous freedom to posit multiple structures on the same operations and
relations, including ones derived implicitly via subclasses: by simply declaring a
SemiRing class instance showing that a ring is a semiring, results about semirings
immediately apply implicitly to any known ring, without us having to explicitly
encode this relation in the hierarchy definition itself, and without needing any
projection or translation of carriers or operations.

3 Category Theory and Universal Algebra

Motivated originally by our desire to cleanly express interfaces for basic numeric
data types such as IN and Z in terms of their categorical characterization as
initial objects in the categories of semirings and rings, respectively, we initially
introduced only the very basics of category theory into our development, again
using type classes where possible to achieve the same benefits mentioned before.

Realizing that much code duplication for the various algebraic structures in
the hierarchy could be avoided by employing universal algebra constructions,
we then proceeded to formalize some of the theory of multisorted universal al-
gebra and equational theories, using it to automatically construct varieties of
algebras. We avoided existing formalizations [3, 5] of universal algebra, because
we aimed to find out what level of elegance, convenience, and integration can
be achieved using the state of the art technology (of which type classes are the
most important instance).

At the time of writing, our development includes a fully integrated formaliza-
tion of a nontrivial portion of category theory and multisorted universal algebra,
including various categories (e.g. the category Cat of categories, and generic va-
riety categories which we instantiate to obtain the categories of monoids, semir-
ings, and rings), functors (including automatically generated forgetful functors),
natural transformations, adjunctions, initial models of equational theories con-
structed from term algebras, transference of proofs between isomorphic models
of equational theories, subalgebras, congruences, quotients, products, and the
first homomorphism theorem.

There is an interesting interplay in our development between concrete alge-
braic structure type classes and their expressions on the one hand, and models
of universal algebras and varieties instantiated with equational theories on the
other. While occasionally a source of tension in that translation in either direc-
tion is not (yet) fully automatic, this duality also opens the door to the possibility



of fully internalized implementations of generic tactics for algebraic manipula-
tion, no longer requiring plugins. One missing piece in this puzzle is automatic
quotation of concrete expressions into universal algebra expressions. We have
already implemented a proof of concept showing that like unification hints [1],
type classes can be used to implement Ltac/OCaml-free quotation.

4 Conclusions

Our development (which according to coqwe consists of about 5K lines of speci-
fications and 1K lines of proofs) shows that the first class type class implementa-
tion in Coq is already an extremely powerful piece of technology which enables
new practical and elegant solutions to old problems.

In our work we push the type class implementation and the new generalized
rewriting infrastructure [10] to their limits, revealing both innocent bugs as well
as more serious issues (concerning both efficiency and functionality) that the
Coq development team is already working on (for instance with the soon to be
revealed new proof engine).
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