Automated Machine-Checked Hybrid System
Safety Proofs
An Implementation of the Abstraction Method In Coq

Eelis van der Weegen

Institute for Computing and Information Sciences
Raboud University Nijmegen

Abstract. This technical report documents our development of a hybrid
system safety prover, implemented in Coq using the abstraction method
introduced by Alur in [1]. The development includes: a formalization of
the structure of hybrid systems; a systematic approach and generic set
of support utilities for the construction of an abstract system (consisting
of decidable “overestimators” of abstract transitions and initiality) faith-
fully representing a (concrete) hybrid system; a translation of abstract
systems to graphs enabling decision of abstract state reachability using a
certified graph reachability algorithm; a proof of an example hybrid sys-
tem (taken from [1]) generated using this tool stack. The development
critically relies on the computable real number implementation part of
the C-CoRN library of formalized constructive mathematics. *

! This research was supported by the BRICKS/FOCUS project 642.000.501 “Advanc-
ing the Real use of Proof Assistants”.

Table of Contents

Automated Machine-Checked Hybrid System Safety Proofs............. 1
FEelis van der Weegen

1T Introduction.o e e e 2
2 (Concrete) Hybrid Systems. ...ttt 4
2.1 StateS . o 4
2.2 Flow and Continuous Transitions............)
2.3 Discrete Transitionsoinin ... 7
2.4 Traces and Safety i 7
3 Double Negation and Stability o i .. 8
4 Underestimation and Overestimation 10
4.1 Automating estimator/decider composition 12
5 Abstraction: Regions, States, and Spaces...............c..oiia.... 13
5.1 Regions and States it 13
5.2 Abstract Space Construction............ ..., 15
6 Abstract Transitions and Reachability 16
6.1 The Straightforward (but Inadequate) Approach 16
6.2 Clouds on the Horizon: Drift 17
6.3 Specification Drift Avoidance: Sharing Overestimators 19
6.4 Propagating Sharing Upwards. 22
6.5 Alternating Traces. ovu vttt 23
7 Underestimating Safety i 24
8 Graphs for Reachability Decision......... oo .. 25
9 Overestimating Continuous Abstract Transitions 26
9.1 Avoiding Drifto 27
9.2 Simple Transition Overestimation 28
10 Overestimating Discrete Abstract Transitions...................... 31
11 Conclusionsttt e 32
Bibliography 32

1 Introduction

In [1], Alur presents a method for automated hybrid system safety verification
based on the construction of an abstract hybrid system (essentially a finite au-
tomaton) corresponding to the hybrid system of interest. The abstract system
is constructed such that traces in the original system are represented in the
abstract system. Consequently, one can draw conclusions about reachability of
states in the concrete system from analysis of state reachability in the abstract
system. Since the abstract system is an entirely finite discrete object (unlike the
concrete system), reachability can simply be computed (using any graph reach-
ability algorithm). Thus, the abstraction method brings the safety verification

Automated Machine-Checked Hybrid System Safety Proofs 3

problem from a continuous and infinite domain into a discrete and finite domain,
where it is amenable to what amounts to brute force.

The prototype implementation described in [1] was developed in a conven-
tional programming language using libraries that use ordinary floating point
arithmetic . The potential for bugs and floating point artifacts inherent in this
approach limits the confidence one can justifiably have in safety judgements
made by such an implementation. In this report, we describe a reimplementa-
tion of the basic technique in Coq, a proof assistant based on a rich type theory
that also functions as a programming language, letting one develop “certified”
programs: programs whose correctness is proved formally within the system.
In our case, the program will be one that produces machine-checked proofs of
hybrid system safety, obtained using the abstraction method.

Our development relies crucially on computation using real numbers, for
which we use the computable real number implementation developed by Rus-
sell O’Connor [?], and part of the C-CoRN library of formalized constructive
mathematics [?]. Indeed, this development showcases its use in a concrete and
practical application, and subtleties regarding the nature of these computable
reals are reflected in this development in several ways, which we will discuss in
some detail.

Organization Throughout this report, we present in parallel our general formal-
ized framework (with particular emphasis on differences with Alur’s presenta-
tion), and the way it is used to obtain a safety proof for an example hybrid
system, taken from [1], modeling the operation of a thermostat. In section 2,
we begin by defining the structure of normal (concrete) hybrid systems, their
semantics, reachability, and safety. We also define the concrete thermostat and
the safety condition we wish to prove. In section 3, we take a moment to discuss
some of the limits on decidability of properties of computable real numbers, as
these complicate matters in the remainder of the development. Next, in section
4 we describe notions of underestimation and overestimation that are applied
throughout the development. Then, in section 5, we begin our presentation of
the abstraction method by discussing abstract regions, states, and spaces. We
build on these in section 6, where we first develop the “obvious” notions of
abstract system and reachability, discuss why they fail, and then rework them
to embrace reachability sharing. In section 7 we show how, assuming abstract
reachability is decidable, we may prove hybrid system safety by computation.
Then, in section 8, we show how an abstract system consisting of transition and
initiality “overestimators” can be used to decide abstract reachability by con-
struction of a directed graph corresponding to the system, and the use of an
ordinary but verified graph reachability algorithm. Finally, in sections 9 and 10
we describe the implementation of the aforementioned overestimators. We end
with conclusions in section 11.

4 Eelis van der Weegen
2 (Concrete) Hybrid Systems

We begin by showing our definition of a concrete system, the different parts of
which we discuss in the remainder of this section.

Record System : Type :=
{ Point : CSetoid
; Location : Set
; Location_eq_dec : EqDec Location eq
; locations : ExhaustivelList Location
; State := Location X Point
s initial : State — Prop
; invariant : State — Prop
s tnvariant_initial : initial C invariant
s tnvariant_mor : Morphism (eq = cs_eq = iff) (curry invariant)
; invariant_stable : V s, Stable (invariant s)
; flow : Location — Flow Point
; guard : State — Location — Prop
;reset @ Location — Location — Point — Point

1.

2.1 States

A hybrid system is a model of how a software system, described as a finite set
of locations ? with (discrete) transitions between them, acts on and responds
to a set of continuous variables (called the continuous state space), typically
representing physical properties of some environment (such as temperature and
pressure).

In [1], Alur requires that the continuous state space be a convex polyhedron in
R™. In our definition of a hybrid system, we initially let the continuous state space
be an arbitrary (constructive) setoid, called Point. We also explicitly require
decidability of location equality.

Our running example (taken from [1]) is a thermostat whose discrete com-
ponent cousists of three locations (called Heat, Cool, and Check), and whose
continuous state space is R2, where R are the computable reals. The Heat and
Cool locations represent states in which the thermostat heats and cools the en-
vironment it operates in, respectively. The Check state is a self-diagnostic state
in which the thermostat does not heat or cool. The first R component in the
continuous state space represents an internally resettable clock, while the second
represents the temperature in the environment in which the thermostat operates.

A State in a hybrid system is a pair (I, p) consisting of a location and a point
p in the continuous state space (representing an assignment of the continuous
variables).

2 We reserve the term “state” for something else.

Automated Machine-Checked Hybrid System Safety Proofs 5

The invariant predicate defines, for each location, a set of permitted values
for the continuous variables. We will use this in the definitions of transition
relations in a moment. The morphism field expresses that this invariant respects
Point’s setoid equality. We further require that it is stable, where stable P is
defined as =——P — P. We discuss the reason for this stability requirement in
section 3.

For the thermostat, the invariant is as follows:

Definition invariant (s : State) : Prop :=
0 < clock s N\
match location s with
| Heat = temp s < 10 A clock s < 3
| Cool = 5 < temp s
| Check = clock s < 1
end.

Associated with the hybrid system is a set of initial states. For our thermostat
example, the initial states are

{s: State | location s = Heat N5 < temp s < 10 A clock s =0}

where location, temp, and clock are the obvious projections. For the thermostat,
the requirement that the invariant holds at each initial state is easily proved.

The remaining parts of a hybrid system (i.e. flow, guard and reset) describe
transitions between states, which, together with the set of initial states, deter-
mine the set of reachable states, representing the possible behaviors exhibited
by a hypothetical real-world implementation of the hybrid system (as software
running on a device with sensors and actuators).

2.2 Flow and Continuous Transitions

Each location in a concrete system has an accompanying flow function which
describes how the continuous variables change over time while the system is in
that location. The idea is that the different locations corresponds to different
uses of actuators available to the software system, the effects of which are de-
scribed by the flow function. For instance, in our thermostat, the flow function
corresponding to the Heat location will have the temperature increase with time,
modeling the effect of the heater component in our imagined thermostat device.

In the canonical definition of hybrid systems, flow functions are specified
as solutions to differential equations describing the dynamics of the continuous
variables. We follow Alur’s example in abstracting from these, taking instead
functions ¢ of type Point — R>¢ — Point which satisfy:

ppO=p
pp(t+th)=0¢(ptp)t

We further require that ¢ is a morphism respecting Point’s setoid equality. We
bundle functions with these properties as a record type called Flow (not shown),

6 Eelis van der Weegen

which is parameterized over the continuous state space type, and is equipped
with an implicit coercion to the ¢ function it contains.

We now say that there is a (concrete) continuous transition from a state
(I,p) to a state (I',p’) if I = I’ and there is a non-negative duration d such that
p' = flow | p d with the invariant for [holding at every point along the way:

Definition can_flow (I : Location) : relation Point
=App ' =3d:Rsp,flowlpd=p A
Vt,0 <t <d— invariant (1, flow 1 p t).
Definition cont_trans : relation State
=XLp)(U,p)Y=1=1UNAcan_flowlpp'.

In our thermostat example, we express the flow function as the product of
two flow functions on R:

Definition thermo_flow (I : Location) : Flow R?
:= product_flow (clock_flow 1) (temp_flow 1).

Here, product_flow has type VX Y, Flow X — Flow Y — Flow (X x Y), and
includes the trivial proofs showing that flow in a product space can be formed
by combining flows in the respective components.

Intuitively, clock_flow and temp_flow are the functions

Definition clock_flow (1 : Location) (¢ :R) (d : R>¢) : R :=
c+d.

Definition temp_flow (I : Location) (¢ : R) (d :R>¢) : R:=
match [with
| Heat = t+ 2% d
| Cool =t exp (—d)
| Check = t * exp (—3 * d)
end.

However, to define the system, we actually require Flow records carrying addi-
tional proofs that these functions are proper flow functions. While these proofs
could be given in an ad-hoc fashion for this thermostat system, we have instead
developed a modest library of reusable flow functions and adaptors that let one
compose flow functions that are proper by construction. Using these, clock_flow
and temp_flow are defined as:

Definition clock_flow (1 : Location) : Flow R :=
flow.positive_linear

Definition temp_flow (1 : Location) : Flow R :=
match [with
| Heat = flow.scale 2 flow.positive_linear
| Cool = flow.decreasing _exponential
| Check = flow.scale () flow.decreasing_exponential
end.

Automated Machine-Checked Hybrid System Safety Proofs 7

2.3 Discrete Transitions

Where continuous transitions describe the flow of continuous variables, discrete
transitions between locations describe the logic of the software system. Each
such transition is comprised of two components: a guard predicate, and a reset
function. The former defines a subset of the continuous state space in which the
transition is enabled (permitted), while the latter describes an instantaneous
change applied as a side effect of the transition, as seen in the following definition
of the discrete transition relation:

Definition disc_trans : relation State := A\(I,p) (I',p’) =
guard (I,p) I' Areset LI' p=1p' A
invariant (1, p) A invariant (I', p').

The thermostat we are modeling has four transitions, as expressed by the
following guard:

Definition thermo_guard (s : State) (I: Location) : Prop :=
match location s, with
| Heat, Cool = 9 < temp s
| Cool, Heat = temp s < 6
| Heat, Check = 2 < clock s
| Check, Heat = % < clock s
| =1
end.

Our reset function resets the clock for all but one of these transitions, and
leaves the temperature variable as is:

Definition thermo_reset (I I’ : Location) (p : Point) : Point :=
(match [/, !’ with
| Cool, Heat | Heat, Check | Check, Heat = 0
| = fstp
end
,snd p).

Here we can discern a conceptual distinction between continuous variables di-
rectly controlled by the system (such as the clock in our thermostat), and vari-
ables that model a physical phenomenon (such as the temperature in our thermo-
stat). This distinction is not made explicit in the definition of a hybrid system;
in principle, nothing is stopping the thermostat from treating temperature as a
variable of the former kind and resetting it to whatever value it pleases. However,
this would simply make the system unimplementable.

2.4 Traces and Safety

A transition is either continuous or discrete:

8 Eelis van der Weegen

Definition trans : relation State := disc_trans U cont_trans.

We now say that a state s is reachable if there is an initial state ¢ from which
one can, by a finite number of transitions, end up in s:

Definition reachable (s : State) : Prop :=
3¢ : State, initial i A trans™ i s.

Here, trans™ is the transitive reflexive closure of trans.

As mentioned before, the set of reachable states represents the possible be-
haviors exhibited by a hypothetical real-world implementation of the hybrid
system (as software running on a device with sensor and actuators).

The idea now is that the purpose of a hybrid system is typically to keep
the continuous variables within certain limits. In other words, to limit the set
of reachable states to some “safe” subset of the complete state space. For our
thermostat example, the intent is to keep the temperature above 4.5 degrees at
all times, and so the safe states are defined to be those in which the temperature
component is >4.5:

Definition unsafe_thermo_state : Ensemble State :=
As = temp s < 4.5.

(An Ensemble T is just a T — Prop.)
The goal, then, is to verify that the reachable states are a subset of the safe
states. Hence, for the thermostat, our main theorem is the following:

Theorem ThermoSafe : unsafe_thermo_state C unreachable.

“A C B” is just notation for “V z, A © — B z”, and unreachable is merely the
complement of reachable.

Since we required that the invariant held at each initial state, and further
defined the continous and discrete transitions such that the invariant had to hold
everywhere along the path, a simple induction proof shows that

reachable C invariant.

Before we continue with our presentation of the abstraction method, we first
take a moment to discuss some of the limits on decidability of properties of
computable real numbers, as their consequences can be seen in many places
in the development. Indeed, we already saw one such instance in the stability
requirement for invariants.

3 Double Negation and Stability

One obvious and useful property we can derive is transitivity of the continuous
transition relation, the proof of which reveals the need for invariant stability.

Automated Machine-Checked Hybrid System Safety Proofs 9

Suppose we have cont_trans (I,p) (I',p’) and cont_trans (I',p") (I",p") for lo-
cations [, I',1"” and points p, p’, p”. To show cont_trans (I,p) (I",p"), we must
show two things. The first, [= I”, follows immediately from transitivity of =.
For the second, can_flow [p p”, we simply take the flow duration to be the sum
of the durations from p to p’ and from p’ to p” (call these d and d’, respectively),
and observe:

flowlp (d+d") = flowl (flowlpd)d
= flow I p' d’
:p//

What remains is to show that the invariant holds at each point along the way.
That is,

Vit,0<t<d+d — invariant (1, flow 1 p t).

From can_flow p p’ we know this is true for 0 < ¢ < d, and from can_flow p’ p”
we know that this is true for d < t < d + d’. Classically, then, the proof is a
done deal, for one can simply distinguish cases ¢t < d and d < t.

Unfortunately, such case distinction is a luxury we do not have, because for
computable reals, the proposition

lelt_dec:Vzxy Rax<yVy<uz.

is not provable. After all, to have a constructive proof of a disjunction A V B
(where A and B are arbitrary propositions/types) is to have either a proof of A
or a proof of B. Similarly, to have a proof of X — AV B is to have a function
that, given an X, either returns a proof of A, or a proof of B. With this in
mind, suppose we try to implement le_lt_dec. Then given z and y in R, we are
to produce a proof either of z < y or of y < z. Unfortunately, the nature of
computable reals only lets us observe arbitrarily close approximations of z and
y. Now suppose z = y. Then no matter how closely we approximate z and y,
the error margins (however small) will always leave open the possibility that
y is really smaller than z. Consequently, we will never be able to definitively
conclude that = < y.
Computable reals do admit two variations on the proposition:

1. lelt_decoveriap : Vo Yy Rio <y —Vz,2<yVe <z
2. lelt_decpy:Vzy:R—(z<yVy<ux)

Both are weaker than the original, and are less straightforward to use. Never-
theless, this is the path we will take in our development, partly out of necessity
(because in some parts of the development, we really need to “run” these lem-
mas to obtain </< proofs), and partly because just taking le_lt_dec as an axiom
amounts to cheating.

For our transitivity proof, we will use the variant expressed using double
negation. Two questions immediately arise when considering this variant. First,

10 Eelis van der Weegen

why does the double negation make it provable? And second, how does one
actually use this doubly negated variant in proofs?

For the first, we need only observe that z < y is equivalent to y £ z, and
that the law of the excluded middle holds under double negation. That is,

Y P,~~(PV —~P)

is a trivial tautology considering that =P is taken to mean P — L.

One practical way to answer the question of how such a doubly negated
proposition might be used to prove things is to observe that double negation,
as a function on types/propositions, is a monad [4]. Writing DN P for == P, we
have the following two key operations that make DN a monad:

returnpy :V A, A — DN A
bindpy :VAB,DN A— (A— DN B) — DN B

The first expresses that any previously obtained result can always be inserted
“into” the monad. The second expresses that results inside the monad may be
used freely in proofs of additional properties in the monad. For instance, one
may bindpy a proof of DN (z < y V y < z) (obtained from le_lt_decpn above)
with a proof of (x < y Vy <z) — DN P, yielding a proof of DN P.

Thus, DN establishes a “proving context” in which one may make use of
lemmas yielding results inside DN that may not hold outside of it (such as
le_lt_decpn), as well as lemmas yielding results not in DN, which can always
be injected into DN using returnpy. The catch is that such proofs always end
up with results in DN, which begs the question: what good is any of this? In
particular, can le_lt_decpn be used to prove anything not doubly negated?

As it happens, there is a class of stable propositions that are equivalent to
their own double negation. Examples include negations, non-strict inequalities
on real numbers, and any decidable proposition.

We now see why we required invariant stability in section 2: in the transi-
tivity proof for cont_trans, it allows us to employ le_lt_decpn to do case dis-
tinction on the ¢ variable when showing that the invariant holds at each point
along the composite path. That is, we simply bind le_lt_decpy t d of type
DN (t < dV d < t) with the straightforward proof of (t < dV d<t) —
DN (invariant (I, flow system [p t)), and then pull the latter out of DN on
account of its stability.

Invariants are typically conjunctions of inequalities, which are stable only if
the inequalities are non-strict. Hence, the limits on observability of computable
real numbers ultimately mean that our development cannot cope with hybrid
systems whose location invariants use strict inequalities. We feel that this is not
a terrible loss. In section 5 we will see analogous limitations in the choice of one’s
abstraction parameters.

4 Underestimation and Overestimation

Ultimately, in our development we are writing a program that attempts to pro-
duce hybrid system safety proofs. Importantly, we are not writing a complete

Automated Machine-Checked Hybrid System Safety Proofs 11

hybrid system safety decision procedure: if the concrete system is unsafe or the
abstraction method fails, our program will simply not produce a safety proof. It
might seem, then, that we are basically writing a tactic for a particular problem
domain. However, tactics in Coq are normally written in a language called Ltac,
and typically rely on things like pattern matching on syntax. Our development,
on the other hand, is very much written in regular Gallina, with hardly any
significant use of Ltac. This was never a conscious design decision though—it is
just the way the development let itself be written. In any case, to characterize
tactic-like functions in regular Gallina, we define underestimation P to be either
a proof of P, or not. In Coq, either of the following will do:

Definition underestimation (P : Prop) : Set := option P.
Definition underestimation (P : Prop) : Set := {b : bool | b = true — P}.

The latter tends to work better with the Program family of commands [?]
which have special support for dependent pairs. Using Program, an underes-
timation of the second variety may be provisionally defined strictly as a bool,
and then separately proved to be a valid underestimation in a proof obligation
generated by Program. The second form also nicely illustrates why we call this
an underestimation: it may be false even when P holds. We can now describe
the functionality of our program by saying that it underestimates hybrid system
safety, yielding a term of type underestimation Safe, where Safe is a proposition
expressing safety of a hybrid system.

Considered as theorems, underestimations are not very interesting, because
they can be trivially “proved” by taking the false/None estimation. Hence, the
value of our program is not witnessed by the mere fact that it manages to
produce terms of type underestimation Safe, but rather by the fact that when
run, it actually manages to returns true/Just P for the hybrid system we are
interested in (i.e. the thermostat). Again, this is typical tactic stuff. It is for this
reason that we primarily think of the development as a program rather than a
proof, even though the program’s purpose is to produce proofs.

The opposite of an underestimation is an overestimation:
Definition overestimation (P : Prop) : Set :=={b : bool | b = false — —P}.

(Here, too, one could use an option type: option (—P).)

Since hybrid system safety is defined as unreachability of unsafe states, we
may equivalently express the functionality of our development by saying that it
overestimates unsafe state reachability. Indeed, most subroutines in our programs
will be overestimators rather than underestimators. Notions of overestimation
and underestimation trickle down through all layers of our development, down
to basic arithmetic. For instance, we employ functions such as:

overestimate<, (e:Q7):V z y: R, overestimation (z <gr y)

As discussed in the last section, <g is not decidable. overestimateg, merely
makes a “best effort” to prove —(z <g y) using e-approximations. A smaller e
will result in fewer spurious true results.

12 Eelis van der Weegen

The types of underestimators and overerestimators often merely repeat a
certain predicate’s parameters, as in the overestimateg, example above. Using
a bit of type class magic to achieve variadicity, we can rid us of this repetition.
Given a predicate P: Ay — ... —» A,, — Prop, we define underestimator P as
the type

Y (ag : Ao) .. (an : Ap), underestimation (P ag ... ap).

(And similar for overestimator.) With these, the type of overestimateg, may be
written as QT — overestimator (<g).

We use the same techniques for real decision procedures (in the few places
we use those): we define decision P as {P} + {—P}, and given a predicate
P:Ay— ... — A, — Prop, we define decider P as the type V (ag : Ao) ... (ay :
A,), decision (P ag ... ay,).

4.1 Automating estimator/decider composition

Underestimators, overestimators and deciders can be combined to form underes-
timators (resp. overestimators, deciders) for things like conjunctions and quan-
tifications over finite domains. For instance, here is a combinator that forms
conjunction overestimators:

Program Definition overestimate_conj { P Q) : Prop}
(z : overestimation P) (y : overestimation Q) :
overestimation (P A Q) :=z A y.
Next Obligation.
intros [A B].
destruct x.destruct y.
simpl in H.
destruct (andb_false_elim _ _ H); intuition.

Qed.

Applying these combinators by hand to form estimators/deciders for composite
propositions is somewhat tedious, but fortunately this process can be automated
if we make overestimation, underestimation, and decision type classes:

Class overestimation (P : Prop) : Set
:= overestimate : { b : bool | b = false — —P}.

If we now say overestimate P, the type class instance resolution mechanism will
try to find (or build) a term of type overestimation P by recursively applying de-
clared type class instances. For instance, if we declare overestimate_conj above as
a type class instance (instead of a plain definition) and then say overestimate (AA
B) where A and B are already known to be overestimatable (meaning the
resolution mechanism is able to build terms of types overestimation A and
overestimation B), then the resolution mechanism will be able to build a term
of type overestimation (A A B) by applying overestimate_con;.

Automated Machine-Checked Hybrid System Safety Proofs 13

‘We show one nontrivial example to illustrate the convenience of this mecha-
nism: at one point in the development we have Coq automatically construct an
overestimator of the property

J u : abstract.State, u € astates A reachable u,
simply by saying
overestimate (3 u : abstract.State, u € astates A reachable u).

To construct this overestimator, Coq recursively applies a variety of instances
that show that (1) decidable properties are overestimatable; (2) existentially
quantified decidable properties over finite domains are decidable; (3) abstract.State
is a finite domain; (4) conjunctions of decidable properties are decidable; (5) list
membership is decidable if equality is decidable for the element type; (6) equality
is decidable for products (such as abstract.State) if equality is decidable for the
components; (7) equality is decidable for Locations; (8) equality is decidable for
abstract (symbolic) regions; (9) reachability in the abstract system is decidable.

In [3], Asperti et al. use a similar technique (but implemented using unifica-
tion hints instead of type classes) to automate reflection of algebraic expressions
in concrete syntax into a an inductively defined abstract syntax.

5 Abstraction: Regions, States, and Spaces

The abstraction method for verification of (concrete) hybrid system safety as we
implement it can be summarized as follows:

1. build an abstract hybrid system corresponding to the concrete hybrid system,;

2. show that each trace in the concrete system corresponds to some trace in
the abstract system (and as a corollary, that reachability in the concrete sys-
tem implies reachability in the abstract system, and most importantly, that
unreachability in the abstract system implies unreachability in the concrete
system);

3. run a certified graph reachability algorithm on the (finite, discrete) abstract
system to verify that no unsafe abstract states are reachable;

4. conclude from 2 and 3 that no unsafe concrete states are reachable either.

An abstract system corresponding to some concrete hybrid system is “like”
the concrete system, but with the continuous state space replaced with a finite set
of regions, each corresponding to a subset of the continuous state space. We begin
by describing these regions, after which we will describe abstract transitions and
reachability.

5.1 Regions and States

Whereas in a concrete hybrid system states consist of a location paired with a
point in the continuous state space, in an abstract hybrid system states consist

14 Eelis van der Weegen

of a location paired with the “name” of a region corresponding to a subset of
the continuous state space:

Definition abstract.State := Location X Region.

From now on we will use a “concrete.” prefix for names like State defined in
section 2, which now have abstract counterparts. Region is a field from a record
type Space bundling region sets with related requisites:

Record Space : Type :=
{ Region : Set
; Region_eq_dec : EqDec Region eq
; regions : ExhaustiveList Region
; NoDup _regions : NoDup regions
;in_region : Container Point Region
s in_region_mor : Morphism (cs_eq = eq = iff) in_region
; regions_cover : ¥ (1: Location) (p : Point),
invariant (I,p) — DN {r: Region |p € r}

1.

The Container Point Region type specified for in_region reduces to Point —
Region — Prop. Container is a type class that provides the notation “z €
y”, prettier than “in_region x y”. in_region_mor states that in_region respects
Point’s setoid equality.

regions_cover expresses that each concrete point belonging to a valid state
must be represented by a region—a crucial ingredient when arguing that un-
reachability in the abstract system implies unreachability in the concrete system.
The double negation in its result type is both necessary and sufficient:

It is necessary because regions_cover boils down to a (partial) function that,
given a concrete point, must select an abstract region containing that point.
This means that it must be able to decide on which side of a border between two
regions the given point lies. As we saw in section 3, that kind of decidability is
only available inside DN unless all region borders have nontrivial overlap, which
as we will see later is undesireable.

Fortunately, the double negation is also sufficient, because we will ultimately
only use regions_cover in a proof of of ... — —concrete.reachable s (for some
universally quantified variable s), which, due to its head type being a negation,
is stable, and can therefore be proved in and then extracted from DN. Hence,
we only need regions_cover’s result in DN.

We can lift the containment relation between points and regions to a con-
tainment relation between concrete states and abstract states:

Instance abs : Container concrete.State abstract.State
=ANlLp)(U,r)=1=UAper.

Again, the Container application reduces to concrete.State — abstract.State —
Prop, but the use of Container lets us say s € s’ instead of abs s s'.

Automated Machine-Checked Hybrid System Safety Proofs 15

5.2 Abstract Space Construction

When building an abstract system, one is in principle free to divide the contin-
uous state space up whichever way one likes. However:

— if the regions are too fine-grained, there will have to be very many of them
to cover the continuous state space of the concrete system, resulting in poor
performance;

— if the regions are too coarse, they will fail to capture the subtleties of the
hybrid system that actually make it safe (if indeed it is safe at all);

— careless use of region overlap can result in undesireable abstract transitions
(and therefore traces), adversely affecting the abstract system’s utility (as
we will discuss in detail in section 6.2).

Like Alur, we use regions formed by multiplying intervals on individual con-
tinuous variables. That is, for the thermostat, we first define a Space partitioning
the continous state space into regions corresponding to clock intervals (which in
the development amounts to enumerating the interval bounds, thanks to some
generic space definition utilities we wrote), then define a Space partitioning the
continuous state space into regions corresponding to temperature intervals, and
then take the product of these to obtain a Space where regions correspond to
“squares” in the continuous state space.

In [1], Alur describes a heuristic for interval bound selection, where the
bounds are taken from the constants that occur in the invariant, guard, and
safety predicates. For the thermostat, we initially attempted to follow this heuris-
tic and use the same bounds Alur uses, but found that due to our use of com-
putable reals, we had to tweak the bounds somewhat to let the system success-
fully produce a safety proof. We give one example of why such tweaking was
required.

Following the heuristic, Alur derives the following two regions:

r0:={(c,t): Point | c <OAD5 <t <6}
ri:={(c,t): Point |2< c<3N6<t<9}

In the Heat location, where both the clock and the temperature increase
linearly, the latter twice as fast as the former, there is a concrete continuous
transition from pg := (0,5) € 79 to p1 := (2,9). p1 is not an element of ry,
and since the floating point representation Alur uses presumably easily lets one
conclude that 54+ 2% 2 £ 9, Alur’s procedure manages to determine that there
is no continuous transition from any point in 1y to a point in 71, justifying
suppression of any abstract continuous transition from (Heat, r) to (Heat, 1)
(we will discuss abstract transitions in detail in the next section).

Unfortunately, our computable reals only let us compute arbitrarily close
approximations of 5+ 2% 2. Consequently, in the process of determining whether
there ought to be an abstract continuous transition from (Heat, rq) to (Heat, r1),
our procedure (which we will describe in 9) will fail to conclude with certainty
that this value does not lie below 9, will thus be unable to definitively establish

16 Eelis van der Weegen

the absence of concrete continuous transitions from points in ry to points in 7y,
and will be forced to include the transition, to ensure that the abstract transition
relation respects its concrete counterpart (in a way discussed in detail in the next
section).

As it happens, the thermostat’s safety indirectly depends on unreachability of
(Heat,), and since (Heat, 9) is a reachable state, the addition of the transition
mentioned above makes the abstract system unsafe, obviously preventing us from
using it to conclude safety of the concrete system.

To correct this kind of problem, we tweaked many of the bounds, nudging
them slightly toward one side or the other. For this particular example, we
changed the 9 bound to 8.9. That way, the comparison reduces to 54+2%2 £ 8.9,
which a sufficiently close approximation can automatically establish.

Another way in which our thermostat regions differ from Alur’s lies in the
fact that our bounds are always inclusive, which means adjacent regions overlap
in lines. We will discuss this in more detail later.

6 Abstract Transitions and Reachability

Once we have a satisfactory abstract Space, our goal is to construct an over-
estimatable notion of abstract reachability implied by concrete reachability, so
that concrete unreachability results may be obtained simply by executing the
abstract reachability overestimator. It seems reasonable, then, to look for an
overestimatable predicate abstract.reachable such that reachable_respect holds:

Definition reachable_respect : Prop :=
Y (s : concrete.State), concrete.reachable s —
Y (s’ : abstract.State), s € s’ — abstract.reachable s'.

After all, this would imply

V (s : concrete.State) (s’ : abstract.State),
s € 8’ — —abstract.reachable s’ — —concrete.reachable s,

expressing that to conclude unreachability of a concrete state, one need only
establish unreachability of an abstract state that contains it. As we will see
shortly, the above definition of reachable_respect leads to problems down the
line, so this is not actually the definition we use in the development. However,
in order to see the motivation for the actual definition we use, let us proceed as
if without foresight for a few more moments.

6.1 The Straightforward (but Inadequate) Approach

The definition of reachable_respect above suggests that the property we would
wish to overestimate is simply

Automated Machine-Checked Hybrid System Safety Proofs 17

Definition abstract.reachable (s : abstract.State) : Prop
:= 3 s’ : concrete.State, s’ € s A concrete.reachable s’.

In order to overestimate it, we could introduce the following obvious abstract
versions of initiality and continuous and discrete transitions:

Definition abstract.initial (s : abstract.State) : Prop
=3 ¢ € s, concrete.initial c.

Definition abstract.cont_trans : relation abstract.State
=As s =3I (ces)(d €, concrete.cont_trans ¢ .

Definition abstract.disc_trans : relation abstract.State
=XAs s’ =3 (c€s)(d €s), concrete.disc_trans ¢ ¢'.

We could then prove (by induction over traces) that abstract.reachable is in-
cluded in the transitive closure of abstract.cont_transU abstract.disc_trans start-
ing at abstract.initial:>

Definition abstract.trans : relation abstract.State :=
abstract.cont_trans U abstract.disc_trans.

Definition reachable_by_abstract_trace (s : abstract.State) : Prop
:= 314, abstract.initial i A abstract.trans® i s.

Lemma : abstract.reachable C reachable_by_abstract_trace.

This would show that abstract.reachable could be overestimated by overestimat-
ing reachable_by_abstract_trace. For the latter, we would first define an abstract
system as a triple containing overestimators for abstract.initial, abstract.cont_trans,
and abstract.disc_trans:

Record abstract.System : Type :=
{ over_initial : overestimator abstract.initial
; over_cont_trans : overestimator abstract.cont_trans
; over_disc_trans : overestimator abstract.disc_trans

1.

Given an instance of this record, we would then overestimate reachable_by_abstract_trace
by constructing a graph with vertices representing abstract states and edges
representing overestimated abstract transitions, and running an ordinary (but
verified) graph reachability algorithm on this graph.

Thus, the task would be reduced to construction of the three overestimators.

6.2 Clouds on the Horizon: Drift

All of the above seems perfectly reasonable, but having gotten to the level of
abstract transition overestimators, we can now see where things would (and did,

3 One would actually take the alternating transitive closure, but we will get to that
later.

18 Eelis van der Weegen

in early versions of our development) go wrong. Unfolding the overestimator
type specified for the over_cont_trans member in abstract.System, we get

V (s 8" : abstract.State),{b : bool | b = false — —abstract.cont_trans s s'}.
Hence, over_cont_trans would need to satisfy:

Y (s &' : abstract.State), abstract.cont_trans s s’ —
abstract.cont_trans_over s s’ = true

‘Which rewrites to:

Y (¢ ¢ : concrete.State), concrete.cont_trans ¢ ¢’ —
Y (s s': abstract.State),c € s) - ' € s —
over_cont_trans s s’ = true

In other words, the existence of a (continuous) transition from one concrete
state to another would force inclusion of transitions between any two abstract
states that contain the respective concrete states. When regions do not overlap,
this is perfectly appropriate. However, consider the implications in the following
example involving overlapping regions.

Suppose our continuous state space is R>(, and our abstract regions are
intervals of the form [n, n+1] with n € N. Further suppose that in some location
[, the flow function monotonically increases. Then by the above, over_cont_trans
must yield true given (1, [1,2]) and (I, [0,1]) (in that order), because in I, there
actually is a concrete continuous transition from a point in the former to a point
in the latter, namely from 1 to 1 (since the continuous transition relation is
reflexive). Hence, we would get an abstract transition from (1, [1,2]) to (I, [0, 1]),
essentially introducing abstract flow in the opposite direction of the concrete
flow. This can clearly have disastrous consequences for unreachability of abstract
states containing unsafe states, which can render the abstraction useless.

Intuitively, the transition from (,[1,2]) and (I,]0,1]) seems redundant, be-
cause the only point in [0, 1] that can be flowed to from [1,2] is a point that
is actually still in [1,2]. Making [0, 1] reachable on account of this redundant
transition seems wasteful. Let us formalize this notion of redundance:

Definition redundant_cont_trans (I : Location) : relation Region
=X =Vpper—-Vit,0<t—flowlpter — flowlpter.

This relation can be lifted to abstract states. An analogous definition can be
given for abstract discrete transitions.

We call the phenomenon of redundant transitions being generated by abstract
transition overestimators: “drift”. With the specifications for abstract transition
overestimators given in the previous section, drift is an inescapable consequence
when regions overlap, occurring not only for continuous abstract transitions (as
shown above), but also for discrete abstract transitions (as will be discussed in
section 10).

It is important to note that drift is not just a consequence of ill-chosen
specifications or regions. Suppose we use strictly non-overlapping regions. While

Automated Machine-Checked Hybrid System Safety Proofs 19

this would solve the problem at the specification level (in that the specification
would no longer force the overestimators to produce redundant transitions), the
overestimator implementations would still be bound to yield redundant tran-
sitions when no specific countermeasures are employed. As a trivial example,
consider non-overlapping regions [0,1) and [1,2), again with monotonically in-
creasing flow. To justify omission of an abstract continous transition from [1,2) to
[0,1), an overestimator implementation would need to prove that 1 £ 1, which
is not decidable or meaningfully underestimatable given only arbitrarily close
approximations of 1.

Hence, our drift countermeasures will be twofold. First, we will first ensure
that at the specification level, transition overestimators are no longer forced
to emit redundant transitions. Then, in sections 9 and 10, we show how our
overestimator implementations exploit this freedom and use a redundancy hint
mechanism to detect and omit redundant transitions.

6.3 Specification Drift Avoidance: Sharing Overestimators

To avoid drift at the specification level, we must either alter the specifications of
abstract transition overestimators to account for redundancy (which will necessi-
tate analogous changes in the specifications of abstract reachability and respect,
as we will see in a moment), or avoid region overlap.

Practically speaking, using non-overlapping regions implies the use of non-
strict equalities, as in the example above. As it happens, non-strict and strict
constructive inequalities on real numbers live in different universes: the former
live in Prop, while the latter live in Type . Since derived propositions (such as
p € r for a point p and a region) all inherit this trait, we would essentially have
to give up on Prop for the entire development. Unfortunately, several components
in the Coq system, including the highly useful subset coercion functionality of
the Program family of commands, currently only support Prop. While these are
strictly engineering concerns that may or may not have theoretical substance,
they do matter when developing a working system.

On the other hand, changing the abstract transition overestimator specifica-
tion, abstract reachability, and respect specifications, turns out to be a relatively
local change, affecting only a few hundred lines of code, most of them in the one
module that introduces these concepts and proves some key lemmas about them.

From an engineering perspective, then, the choice is easy. We will now de-
scribe the changes in abstract transition overestimator specification in detail.

In the discussion of the first example in the previous section, we judged the
redundant abstract transition from (I,[1,2]) to (,]0,1]) to be “wasteful” be-
cause the destination of the sole concrete continuous transition from 1 to 1 that
spawned it was already covered by [1,2], and so if [1,2] is reachable, there
should be no reason to make [0, 1] reachable as well. Implicit in this intuition is
the idea that regions ought to share the burden of being reachable on behalf of
the points they represent: if 1 is a reachable concrete point, then reachability of

20 Eelis van der Weegen

[1,2] should remove the need for reachability of [0, 1] (to represent reachability
of 1), and vice versa.

Unfortunately, as shown in the previous section, the overestimator specifica-
tions used in the definition of abstract.System given in section 6.1 do not permit
this sharing. Let us consider how they would need to be changed to allow for it.
We can easily make the unfolded specification of over_cont_trans shown in the
previous section permit sharing by substituting one universal quantifier with an
existential one:

Y ¢ ¢, concrete.cont_trans ¢ ¢/ —

Y (s : abstract.State), c € s —

3 (s’ : abstract.State), ¢’ € s’ A
over_cont_trans s s' = true

Applied to the example above, the existence of a concrete continuous transition
from 1 to 1 now only results in the requirement that

Y (s : abstract.State), (1,1) € s —
3 (s’ : abstract.State), (1,1) € s’ A
over_cont_trans s s' = true

This means over_cont_trans now has the freedom to return false given (I,[1,2])
and (I,]0,1]) (thereby suppressing creation of that abstract transition) if it re-
turns true given (1,[0,1]) and (/,[0,1]) (which it will have to anyway).

To give over_cont_trans and over_disc_trans new types that embody this
new specification, to replace the old overestimator types, we first introduce
shared_cover:

Definition shared_cover
{ Container concrete.State C}'{ Container abstract.State D'}
(es:C) (ss:D): Prop:=
V s : concrete.State, s € cs — DN (3 r: abstract.State,s € r A r € ss).

The details of the Container type class are of no interest to us right now. What
matters is that a “container” of concrete states is said to be sharedly-covered by

a “container” of abstract states if for each of the concrete states in the former

there is an abstract state in the latter that contains it.* We state this in terms of
Containers so that the definition applies to any types which have a reasonable

notion of containment.

Stated in terms of shared_cover, a reasonably straightforward type for over_cont_trans

would be:

over_cont_trans :V s : abstract.State,
{p : abstract.State — bool |
shared_cover (A¢’ = 3 ¢ € s, concrete.cont_trans ¢ ¢') p}

4 The double negation is here for much the same reasons as were given in section 5.1
for the double negation in the type of regions_cover.

Automated Machine-Checked Hybrid System Safety Proofs 21

That is, over_cont_trans would be a function that, given an abstract state, re-
turns a boolean predicate on abstract states that, when interpreted as a container
in the obvious way, covers all concrete states reachable by a single concrete con-
tinuous transition from a concrete state contained in the original abstract state.
We make a few last adjustments to arrive at the actual type used in the devel-
opment.

First, the abstract transition only actually needs to cover points at which the
invariant holds. Integrating that fact in the type of over_cont_trans allows us to
use regions_cover in its implementation:

over_cont_trans : ¥V s : abstract.State,
{p : abstract.State — bool | shared_cover
(A’ = concrete.invariant ¢ A3 ¢ € s, concrete.cont_trans ¢ ¢') p}

Using some Container utilities, we may write this in a more point-free fashion:

over_cont_trans :V s : abstract.State,
{p : abstract.State — bool | shared _cover
(concrete.invariant N (overlap s o concrete.cont_trans~*)) p}

The use of a boolean predicate is less than ideal because it means that to enumer-
ate all abstract states directly reachable from some given abstract state (which
we will have to do eventually when computing reachability in a graph whose edges
are built from these overestiamtors), one basically needs to filter an exhaustive
list of all abstract regions using the predicate, while one could easily imagine
that clever overestimator implementations could exploit locality to exclude cer-
tain classes of potential transition destinations a priori from consideration. To
facilitate such overestimators (which we do not develop in this report), we re-
place the boolean predicate with a list of abstract states. Since lists are also
Containers, the rest of the definition remains unchanged:

over_cont_trans :V s : abstract.State,
{p: list abstract.State | shared_cover
(concrete.invariant N (overlap s o concrete.cont_trans~')) p}

Lists may contain duplicates. The graph reachability algorithm which we will
use in section 8 relies on absence of duplicates in the edge relation (expressed
as a function returning lists) for its termination proof. While we could filter out
duplicates at a much later stage to satisfy that requirement, we choose to let the
no-duplicates requirement propagate through to our overestimator specification,
avoiding premature pessimization:

over_cont_trans :V s : abstract.State,
{p: list abstract.State | NoDup | A\ shared_cover
(concrete.invariant N (overlap s o concrete.cont_trans~')) p}

The vm_compute tactic we will ultimately use to run our program tends to reduce
terms in Prop a bit too eagerly, adversely affecting performance. To work around
this, we introduce a bit of laziness in the form of a little unit abstraction:

22 Eelis van der Weegen

over_cont_trans :V s : abstract.State,
{p: list abstract.State | () — (NoDup I A shared_cover
(concrete.invariant N (overlap s o concrete.cont _trans~1')) p)}

This will still let us use the property in proofs, but will stop vm_compute from
unnecessarily evaluating its proof term.

Finally, we actually need the same definition for abstract discrete transitions,
so we factor out the common part:

Definition sharing_transition_overestimator
(R : relation concrete.State) : Set :=V s : abstract.State,
{p: list abstract.State | () — (NoDup | A shared_cover
(concrete.invariant N (overlap s o R™1)) p) }.

We can now show the definition of abstract.System as it appears in the develop-
ment:

Record abstract.System : Type :=
{ over_initial : overestimator (overlap concrete.initial)
; over_disc_trans : sharing_transition_overestimator concrete.disc_trans
; over_cont_trans : sharing_transition_overestimator concrete.cont_trans

1.

6.4 Propagating Sharing Upwards
Consider again the definition of abstract.reachable given in section 6.1:

Definition abstract.reachable (s : abstract.State) : Prop
:= 3 s’ : concrete.State, s’ € s A concrete.reachable s’.

Clearly, this definition does not let abstract states share the burden of reachabil-
ity, and can therefore not be overestimated using our retyped abstract transition
overestimators. But recall that it followed directly from the following more basic
specification we had in mind:

Definition reachable_respect : Prop :=
Y (s : concrete.State), concrete.reachable s —
V (s : abstract.State), s € s' — abstract.reachable s'.

Which we chose because it implied

Y (s : concrete.State)
(3 s’ : abstract.State, s € ' A ~abstract.reachable s') —
—concrete.reachable s,

expressing that to conclude unreachability of a concrete state, one need only
establish unreachability of any abstract state that contains it. However, we now
see that this definition, too, neglects to facilitate sharing: when abstract states

Automated Machine-Checked Hybrid System Safety Proofs 23

may share the burden of reachability, one should establish unreachability of all
abstract states containing the concrete state. That is, what we really want is an
abstract.reachable satisfying:

V s : concrete.State,
(V §' : abstract.State, s € s — —abstract.reachable s') —
—concrete.reachable s.

This property follows from the following new definition of reachable_respect we
will use:

Definition reachable_respect : Prop :=
shared_cover concrete.reachable abstract.reachable.

This new definition does not give rise to a nice simple definition of abstract.reachable
distinct from the simple transitive closure of initiality and transition judgements
made by the overestimators (analogous to reachable_by_abstract_trace), so we
just take the latter and prove reachable_respect by induction over traces. There
is, however, one last subtlety involved.

6.5 Alternating Traces

In the definition of reachable_by_abstract_trace, we used the simple transitive clo-
sure of the union of abstract.cont_trans and abstract.desc_trans. This formula-
tion implied that abstract traces could contain successive continuous transitions.
Unfortunately, as Alur observes, such repetition results in pathological abstract
traces that do not represent any concrete trace.

The solution, as described by Alur, lies in the fact that concrete reachability
by arbitrary traces is equivalent to concrete reachability by traces that alternate
between continuous and discrete transitions:

Definition concrete.trans_kind (b : bool) : relation concrete.State :=
if b then concrete.disc_trans else concrete.cont_trans.

Definition concrete.reachable_alternating (s : concrete.State) : Prop :=
i : concrete.State, concrete.initial i N alternate concrete.trans_kind i s.

Lemma concrete.alternating_reachable_equiv :
V s, concrete.reachable s < concrete.reachable_alternating s.

(Here, alternate forms the alternating transitive reflexive closure of a pair of
relations. Indexing the latter by a bool simplifies the definition of alternate.) As
an immediate corollary, we have:

—concrete.reachable_alternating s — —concrete.reachable s

Hence, in order to show that unsafe concrete states are not reachable, we need
only show that they are not reachable by an alternating trace. Consequently,
we may define abstract.reachable in terms of alternating traces as well, and still
prove reachable_respect:

24 Eelis van der Weegen

Definition abstract.trans_kind (b : bool) : relation abstract.State :=
As 8’ = s € (if b then over_cont_trans else over_disc_trans) s'.

Definition abstract.reachable (s : abstract.State) : Prop :=
34 : abstract.State, over_initial ahs i = true A\ alternate abstract.trans_kind i s.

7 Underestimating Safety

In the next section we show that thanks to decidability of our transition and
initiality overstimators, abstract.reachable is decidable. But first, we end the
current section by showing how a decision procedure for abstract.reachable lets
us underestimate hybrid system safety, and in particular, lets us obtain a proof
of thermostat safety. So suppose we have

reachable_dec : decider abstract.reachable

And suppose we are given the following specification of unsafe concrete states,
covered by a finite list of abstract states:

Variables
(unsafe : concrete.State — Prop)
(astates : list abstract.State)
(astates_cover_unsafe :V s, unsafe s =¥ r,s € r — r € astates).

Then, using reachable_dec and unreachable_respect, we can easily define
Definition over_unsafe_reachable : overestimation (overlap unsafe concrete.reachable).
Taking unsafe := thermo_unsafe and a suitable abstract cover, we obtain

Definition over_thermo_unsafe_reachable :
overestimation (overlap thermo_unsafe concrete.reachable).

Recall that ThermoSafe was defined as thermo_unsafe C concrete.unreachable
in section 2. Since we trivially have —overlap unsafe concrete.reachable —
ThermoSafe, we also have:

Definition under_thermo_unsafe_unreachable : underestimation ThermoSafe.
Finally, we run the underestimation:

Theorem : ThermoSafe.

Proof.
apply (underestimation_true under_unsafe_unreachable).
vm_compute. reflexivity.

Qed.

underestimation_true is a tiny utility of type ¥V P (o : underestimation P),o0 =
true — P, whose application in the proof reduces the goal to

Automated Machine-Checked Hybrid System Safety Proofs 25

under_thermo_unsafe_unreachable = true.

The vm_compute tactic invocation then forces evaluation of the left hand side,
which will in turn evaluate over_thermo_unsafe_reachable, which will evalu-
ate reachable_dec, which will (as we will see in the next section) evaluate the
abstract.System overestimators (which we will build in sections 9 and 10). This
process, which takes about 35 seconds on a modern desktop machine, eventually
reduces under_thermo_unsafe_unreachable to true, leaving true = true, proved
by reflexivity.

We can now also clearly see what happens when the abstraction method
“fails” due to poor region selection, overly simplistic transition/initiality overes-
timators, or plain old unsafety of the system. In all these cases, vm_compute re-
duces under_thermo_unsafe_unreachable to false, and the subsequent reflexivity
invocation will fail.

This concludes the high level story of our development. What remains are
the implementation of reachable_dec in terms of the decidable overestimators for
abstract initiality and transitions bundled in the abstract.System record, and
the implementation of those overestimators themselves. The former is treated in
section 8, the latter in sections 9 and 10.

8 Graphs for Reachability Decision

Given an abstract.System containing overestimators for abstract transitions and
initiality, we can decide abstract.reachable (as defined in the last section) by con-
structing a directed graph in which vertices and edges correspond to abstract
states and transitions, respectively, and then using an ordinary graph reacha-
bility algorithm. Because the hybrid system safety proofs we ultimately wish to
produce obviously depend on the correctness of the reachability determinations
obtained this way, we have implemented a certified graph reachability algorithm
inside Coq. For efficiency reasons, it computes a list of all vertices reachable
from a given list of initial vertices in one go:

graph_reachables : ¥V (g : DiGraph) (start : list Vertex), NoDup start —
{l: list Vertex |V w : Vertex,w € | < digraph.reachable start w}

Here, DiGraph and digraph.reachable are defined as

Record DiGraph : Type := Build_DiGraph
{ Vertex : Set
; Vertex_eq_dec : EqDec Vertex eq
s vertices : ExhaustiveList Vertex
; edges : Vertex — list Vertex
; edges_NoDup : ¥V v, NoDup (edges v)
1.
Definition edge : relation Verter := v w = w € edges v.

Definition digraph.reachable (start : list Vertex) (v : Vertex) : Prop :=
3 s € start, edge™ s v.

26 Eelis van der Weegen

Naively equating vertices with abstract states and edges with abstract transi-
tions (either continuous or discrete) would make vertex reachability in the graph
equivalent to potentially-non-alternating abstract state reachability, which as we
saw in section 6.5 would result in many needlessly reachable abstract states, po-
tentially rendering the abstraction useless.

To make vertex reachability in the graph equivalent to alternating abstract
state reachability, we first add a bool component to Vertez:

Definition Verter : Set := bool x abstract.State.

Next, we only add edges corresponding to abstract continuous transitions from
a vertex v with fst v = true to a vertex w with fst w = false, and only add edges
corresponding to abstract discrete transitions from a vertex v with fst v = false
to a vertex w with fst w = true:

Definition nexts (v : Vertex) : list abstract.State :=
let (k,s):=vin
if k£ then over_cont_trans s
else over_disc_trans s.

Definition edges (v : Vertex) : list Vertex := map (pair (negb (fst v))) (nexts v).

Definition graph : DiGraph := Build_DiGraph Vertez edges.
(* Remaining record fields omitted for the sake of exposition.)

This ensures that paths through the graph alternate between vertices v with
fst v = true and vertices with fst v = false, and that the corresponding abstract
traces alternate between continuous and discrete transitions. A few simple in-
ductions now show that if we take as start those vertices selected by our initiality
overestimator, abstract.reachable is equivalent to digraph.reachable:

Definition start : list Vertez := {v : Vertex | abstract.over_initial (snd v)}.

Theorem graph_respect : ¥ s : abstract.State ap,
abstract.reachable s <+ 3 b : bool, digraph.reachable start (b, s).

Combining graph_respect, abstract.unreachable_respect, and reachables, it is
now straightforward to construct a decider abstract.reachable.

Through the definitions of edges, nexts, and start, this decider builds on the
three overestimators in abstract.System. In the next two sections, we discuss how
to define an abstract.System instance for the discretization (described in section
5.2) of the concrete thermostat’s continuous state space.

9 Overestimating Continuous Abstract Transitions

We now discuss the implementation of the second component of an abstract.System,
over_cont_trans:

over_cont_trans : sharing_transition_overestimator concrete.cont_trans

Automated Machine-Checked Hybrid System Safety Proofs 27

where sharing_transition_overestimator is defined as

Definition sharing_transition_overestimator
(R : relation concrete.State) : Set :=V s : abstract.State,
{1: list abstract.State | () — (NoDup I A shared_cover
(concrete.invariant N (overlap s o R71))) }.

where shared_cover is defined as

Definition shared _cover
‘{ Container concrete.State C }{ Container abstract.State D}
(es:C) (ss:D): Prop:=
V s : concrete.State, s € cs — DN (3 r: abstract.State, s € r AT € ss).

9.1 Avoiding Drift

A first observation is that since the concrete continuous transition relation is
reflexive, over_cont_trans must be reflexive as well (meaning its result list must
include the abstract state it received as an argument). By the sharing principle,
this means that redundantly reachable regions (whose only reachable points lie
within the source region) are accounted for, which in turn means the problem
can be reduced to the overestimation of non-redundant transitions, characterized
by the following relation:

Definition substantial_cont_trans (1 : Location) : relation Region
=Arr=3pp,perAp er’ ' A-p €rAcan_flowlpq.

Hence, we seek to build an overestimator substantial_cont_trans. Note that even
though redundantly reachable regions are “accounted for” specification-wise, we
still need a mechanism enabling us to notice their redundancy, so that our overes-
timator may return false. Unfortunately, detecting whether a particular abstract
continuous transition would be redundant is undecidable in general. For now, let
us simply assume existence of a redundance underestimator, and worry about
its implementation later:

Variable under_redundant : underestimator redundant_cont_trans.

The idea now is to build a drift-oblivious overestimator for the simplistic abstract.cont_trans
relation, which will emit redundant transitions, but to only run it if the redun-
dancy underestimator does not indicate redundance. That is, supposing we have

Variable simple_over_cont_trans : overestimator abstract.cont_trans,

we can define

Program Definition over_subst_cont_trans (1 : Location) (rsye Tast : Region)
: overestimation (substantial_cont_trans 1 Tsqe Tast)
:= —wunder_redundant | v ' A simple_over_cont_trans | Te Tqst.

28 Eelis van der Weegen

Thus, the problem is reduced to construction of under_redundant and simple_over_cont_trans.
We discuss the latter in the next section. For the former, we observe that the
redundant transitions we worry about appear as transitions from a region to
a region adjacent to it in the opposite direction of the flow corresponding to
the current location. This means that if we know which regions are adjacent,
and further know when (e.g. in which locations) individual flow components are
monotonic (and in which direction), we can underestimate redundancy quite
well. Since in our development abstract regions are formed by explicitly enu-
merating interval bounds, we have a-priori knowledge of which regions will be
adjacent. Hence, the only additional work we have to do is to provide as many
proofs of flow monotonicity (in the different locations and for the different flow
components) as possible, with which some generic utilities can construct a proper
redundancy underestimator.

Having taken care of drift, all we need now (to complete the definition
of over_cont_trans) is an implementation of simple_over_cont_trans, which we
present in the next section.

9.2 Simple Transition Overestimation
Recall that abstract.cont_trans is defined as

Definition abstract.cont_trans : relation abstract.State
=XAs s’ =3 (c€s)(d €s), concrete.cont_trans ¢ c’.

Since location does not change in continuous transitions, and location equality
is decidable (since locations are just names), we can easily reduce the problem
down to overestimation of

Definition region_cont_trans (I : Location) : relation Region
= Agpe Tdst = 3 (psrc € Tsrc) (pdst € ’I‘,dSt/), can_flow | psre Past,

where can_flow is still

Definition can_flow (I : Location) : relation Point

=)\psrc Ddst = dd: RZOaﬂow lpsrc d= Pdst A
V1,0 <t < d— invariant (1, flow [pee t).

So given a location [and regions 74 and rgs:, we are looking to establish absence
of concrete transitions from points in rg,. to points in 74;.

Let us first consider whether we can rule out transitions by looking at the invari-
ant, which can_flow demands must hold at every point along the way. Clearly,
if we are able to determine that there do not exists paths from points in 4. to
points in r4s with the invariant holding at each point along the way, then there
need be no continuous transition between rs.. and rys. Unfortunately, deciding
this property is too hard. However, suppose we can at least overestimate whether
the invariant holds somewhere in an abstract region:

Automated Machine-Checked Hybrid System Safety Proofs 29

Variable invariant_overestimator : overestimator abstract.invariant.

With invariant_overestimator, we can start defining simple_over_cont_trans as
follows:

Definition simple_over_cont_trans : overestimator abstract.cont_trans
=)\rsrc Tdst =
mvartant_overestimator repe N\
invariant __overestimator r4s A (% .. further tests, to be discussed.).

That is, if either —invariant_overestimator rs,. or —invariant_overestimator rqs,
then we conclude that there can be no concrete transition from a point in rg,.. to
a point in rg4. To keep matters simple, we will not bother to check the invariant
anywhere else. This does mean that we might generate a spurious abstract tran-
sition from rg,.. to 745 if the only reason for lack of concrete transitions between
rsre and 744 is that the invariant be broken somewhere in the middle of the
flow path. Fortunately, this turns out not to cause problems for the thermostat
hybrid system. In our development, the definition of invariant_overestimator is
almost automatic, requiring only that the thermostat’s invariant be reformulated
in terms of (possibly unbounded) squares in the continuous state space, whose
intersection with abstract regions can be automatically overestimated.

Next, let us consider how we might rule out absence of concrete continu-
ous transitions from points in 74 to points 74 by looking at the actual flow
function. Clearly, if we are able to determine that there are no points in 7.
which the flow function maps to points in rgg, then there need be no continu-
ous transition between 4., and rgs. Equally clearly, this is utterly impossible
to meaningfully overestimate for an general flow function and general regions.
However, the thermostat’s posesses three key properties that we can exploit:

1. its continuous space is of the form R";
2. abstract regions correspond to multiplied R intervals;
3. its flow functions are both separable and range invertible.

A flow function on a product space is separable if it can be written as the
product of flow function on the respective component spaces. For instance, in
R2, a flow function is separable if future values of the first component only
depend on past values of that same component, and the same is true for the
second component. Being defined as the product of two flow functions on R
(temp_flow and temp_flow), the thermostat’s flow function (in any location) has
this property by construction.

A flow function f on R is range invertible if

3 (range_inverse : OpenRange — OpenRange — OpenRange),
V (a: OpenRange) (p:R),p € a —
V (b: OpenRange) (d :R>¢),f p d € b — d € range_inverse a b

Here, OpenRange represents potentially unbounded intervals in R (with bounds
closed if present). Range invertibility is a less demanding alternative to point
invertibility:

30 Eelis van der Weegen

3 (point_inverse :R — R — R),V p ¢: R, f p (point_inverse p q) = ¢

We need range invertibility because the exponential flow functions are not point
invertible.

As mentioned in section 2.2, we used a modest library of flow functions when
defining the thermostat’s flow. Included in that library are range-inverses, which
consequently automatically apply to the thermostat’s flow. Hence, no ad-hoc
work is needed to show that the thermostat’s flow functions are range-invertible.

Having defined the class of separable range-invertible flow functions, and
having argued that the thermostat’s flow is in this class, we now show how to
proceed with our overestimation of existence of points in 4. which the flow
function map to points in rgs;. As discussed in section 5.2, the abstract space for
our thermostat was constructed as the product of two abstract spaces based on
temperature and clock intervals, respectively. Regions in such a product space
are pairs of regions in the composite spaces, so 75 and rgs; can be written as
(Tsre_temp, Tspe_clock) and (rqsi_temp, rqs:_clock), respectively.

‘We now simply use an OpenRange overlap overestimator of type

QT — V a b: OpenRange, overestimation (overlap a b)

(defined in terms of things like overestimateg, shown in section 4) to overesti-
mate whether the following three ranges overlap:

1. [0, 0]
2. range_inverse temp_flow Tere_temp rqsi_temp
3. range_inverse clock_flow 7sr._clock rqs_clock

Overlap of 2 and 3 is equivalent to existence of a point in 7., from which one can
flow to a point in rys. After all, if these two range inverses overlap, then there
is a duration d that takes a certain temperature value in r4.._temp to a value in
rqst-temp and also takes a certain clock value in r4,.._clock to a value in 745 _clock.
If 2 and 3 do not overlap, then either it takes so long for the temperature to
flow from 7g.._temp to rqs_temp that any clock value in 74 _clock would “over-
shoot” rgst_clock, or vice versa. Finally, if 1 does not overlap with 2 and 3, then
apparently one could only flow backward in time, which is not permitted. Hence,
overlap of these three ranges is a necessary condition for existence of concrete
flow from points in rg,. to points in rge, and so our abstract.cont_trans overes-
timator may justifiably return “false” when the overlap overestimator manages
to prove absence of overlap.

Having shown at last the “real” flow test condition used in the overesti-
mation, we can show more precisely how drift would arise if we avoided region
overlap (thereby eliminating drift problems at the specification level) but did not
bother to employ a redundancy underestimator. Suppose there were clock inter-
vals [0, 1) and [1, 2), and a temperature interval [5, 6). Let us consider what
our simple abstract.cont_trans overestimator would return given the abstract
states (Heat, (half -range 5 6,[1,2)) and (Heat, ([5,6),[0,1)). After determining
that the locations are equal as required, and that the invariant holds in both

Automated Machine-Checked Hybrid System Safety Proofs 31

regions, our overestimator would proceed to overestimate overlap of the ranges
mentioned above. In this particular case, with clock_flow simply being linear, it
would compute that

range_inverse clock_flow rgy_clock rqsi_clock = [—2,0)

Unfortunately, the overestimator would not be able to determine that [0, inf)
does not overlap with [-2, 0), because given only two approximations of 0, it
cannot determine that 0 < 0. Thus, it would have no choice but to bless the
transition.

10 Overestimating Discrete Abstract Transitions

We now turn our attention to the implementation of the over_disc_trans com-
ponent in abstract.System. Recall (from section 2.3) the definition of concrete
discrete transitions:

Definition concrete.disc_trans : relation concrete.State := \s s’ =
guard s (location s') A
reset (location s) (location s') (point s) = point s’ A
invariant s N\ invariant s’.

To overestimate whether there exists a concrete discrete transition from a
concrete state in one abstract state to a concrete state in another abstract state,
we first have over_disc_trans simply check whether the invariant holds at both
ends (exactly as in the continuous case), and (in the same way) whether the
guard holds at the origin. The interesting part is the overestimation of whether
there is a point in the source region that the reset function maps to a point
in the destination region. This problem sounds rather similar to that of flow
overestimation discussed in section 9, but the similarity is superficial for two
reasons: reset functions are much simpler as they don’t have a time parameter,
and discrete transitions suffer from a substantially different variety of drift.

Suppose one’s continuous state space is R>o, and one’s abstract regions are
intervals of the form [n,n + 1] with n € N. Further suppose that there is a
discrete transition from location [to location I’ with guard g = const True and
reset function r = id. And suppose we are overestimating whether there needs
to be an abstract discrete transition from (1, [0,1]) to (I',[1,2]). Including this
transition seems wasteful, because the only point in [1,2] that the reset function
maps a point in [0, 1] to is 1, but that point is still in [0, 1].

For continuous transitions, we avoided drift by explicitly filtering out tran-
sitions found to be redundant by a redundance underestimator that relied on
reflexivity of the continuous transition relation, knowledge of adjacent regions,
and knowledge of where the flow function was monotonic. However, the discrete
transition relation is not necessarily reflexive, so we use a slightly different mech-
anism. Basically, we simply take as an argument an underestimation of whether
a particular reset function is the identity function, and if the underestimator

32 Eelis van der Weegen

says that it is, then we only make abstract discrete transition to abstract states
with the same region as the source state. If on the other hand the underestimator
does not indicate that the reset function in question is the identity function, then
we simply take the bounds of the source region, map them with the reset func-
tion, and overestimate whether the resulting region overlaps with the candidate
destination (for this to be valid, the reset function must be nondecreasing”

For all this to work for a system with a continuous state space in R", the
reset function must additionally be separable. Our thermostat’s reset functions
are trivially separable.

11 Conclusions

— nice showcase of proof-by-computation-on-computable-reals

— systematic use of estimators to make tactic-like optional-deciders, at each
level in the stack

— computable reals do complicate things

— heuristic for bound selection doesn’t work out of the box. manual tweaking
obviously not ideal. more experimentation required

— region overlap

— drift and redundance

— code stats(?)

— requirements on system: separability of flow and reset, invariant stability

— lots of room for more clever heuristics with less restrictive preconditions (e.g.
separability)

References

1. Alur, R.: Predicate abstraction for reachability analysis of hybrid systems. ACM
Trans. Embedded Comput. Syst 5 (2006) 2006

2. The Coq Development Team: The Coq Proof Assistant Reference Manual — Version
V8.2. (February 2009) http://coq.inria.fr.

3. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: Hints in unification. In:
TPHOLSs ’09: Proceedings of the 22nd International Conference on Theorem Proving
in Higher Order Logics, Berlin, Heidelberg, Springer-Verlag (2009) 84-98

4. Wadler, P.: Monads for functional programming. In Jeuring, J., Meijer, E., eds.:
Advanced Functional Programming. Volume 925 of LNCS., Springer (1995) 24-52

When we say that a flow function is “nondecreasing”, we mean that it does not
decrease over time, and so this is really a statement about flow direction. But when
we say that a reset function (which does not take a time argument) is “nondecreas-
ing”, we simply mean that it does not flip ranges around, which is a rather mundane
property.

	Automated Machine-Checked Hybrid System Safety Proofs
	Eelis van der Weegen
	Introduction
	(Concrete) Hybrid Systems
	States
	Flow and Continuous Transitions
	Discrete Transitions
	Traces and Safety

	Double Negation and Stability
	Underestimation and Overestimation
	Automating estimator/decider composition

	Abstraction: Regions, States, and Spaces
	Regions and States
	Abstract Space Construction

	Abstract Transitions and Reachability
	The Straightforward (but Inadequate) Approach
	Clouds on the Horizon: Drift
	Specification Drift Avoidance: Sharing Overestimators
	Propagating Sharing Upwards
	Alternating Traces

	Underestimating Safety
	Graphs for Reachability Decision
	Overestimating Continuous Abstract Transitions
	Avoiding Drift
	Simple Transition Overestimation

	Overestimating Discrete Abstract Transitions
	Conclusions

	Bibliography

