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Abstract. We have developed a hybrid system safety prover, imple-
mented in Coq using the abstraction method introduced by [2]. The de-
velopment includes: a formalisation of the structure of hybrid systems;
a framework for the construction of an abstract system (consisting of
decidable “over-estimators” of abstract transitions and initiality) faith-
fully representing a concrete hybrid system; a translation of abstract
systems to graphs, enabling the decision of abstract state reachability
using a certified graph reachability algorithm; a proof of the safety of
an example hybrid system generated using this tool stack. To produce
fully certified safety proofs without relying on floating point computa-
tions, the development critically relies on the computable real number
implementation of the CoRN library of constructive mathematics for-
malised in Coq. The development also features a nice interplay between
constructive and classical logic via the double negation monad.

1 Introduction

In [2], Alur et al. present an automated method for hybrid system safety ver-
ification in which one derives from the hybrid system of interest an abstract
hybrid system, which is essentially a finite automaton whose traces are suffi-
ciently representative of traces in the original system that unreachability in the
abstract system (which can be decided using a standard graph algorithm) implies
unreachability in the concrete system (which, being governed by continuous be-
haviours, cannot be decided so readily). Thus, the abstraction method brings the
safety verification problem from a continuous and infinite domain into a discrete
and finite domain, where it can be dealt with using standard graph algorithms.

The prototype implementation described in [2] was developed in a conven-
tional programming language, only has an informal correctness argument, and
uses ordinary floating point numbers to approximate the real numbers that are
used in said argument. These factors limit the confidence one can justifiably have
in safety judgements computed by this implementation, because (1) it is easy
for bugs to creep into uncertified programs; (2) it is easy to make mistakes in
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informal correctness arguments; and (3) floating point computations are subject
to rounding errors and representation artifacts.

Our goal is to increase this degree of confidence by developing a certified
reimplementation of the abstraction technique in Coq, a proof assistant based
on a rich type theory that also functions as a (purely functional) programming
language. The Coq system lets us develop the algorithms and their formal cor-
rectness proofs in tandem in a unified environment, addressing (1) and (2) above.

To address (3), we replace the floating point numbers with exact computable
reals, using the certified exact real arithmetic library developed by O’Connor [14]
for CoRN, our Coq repository of formalised constructive mathematics [7]. This
change is much more than a simple change of representation, however; because
computable reals only permit observation of arbitrarily close approximations,
certain key operations on them (namely naive comparisons) are not decidable.
The consequences of this manifest themselves in our development in several
ways, which we discuss in some detail. Hence, our development also serves to
showcase O’Connor’s certified exact real arithmetic library applied to a concrete
and practical problem.

On a separate note, we argue that the use of computable reals is not just
a pragmatic choice necessitated by the need to compute, but is actually funda-
mental considering their role in hybrid systems, where they represent physical
quantities acted upon by a device with sensors and actuators. In the real world,
measurements are approximate.

The end result of our work is a framework with which one can specify (inside
Coq) a concrete hybrid system, set some abstraction parameters, derive an ab-
stract system, and use it to compute (either inside Coq itself or via extraction
to OCaml) a safety proof for the concrete system.

2 Hybrid Systems and the Abstraction method

A hybrid system is a model of how a software system (running on a device
with sensors and actuators), described as a finite set of locations with (discrete)
transitions between them, acts on and responds to a set of continuous variables
(called the continuous state space), typically representing physical properties of
some environment (such as temperature and pressure).

There are many varieties of hybrid systems [9,11]. We follow [2] and to illus-
trate the definition and the abstraction method, we use the example of a system
describing a thermostat (this is the same example as in [2]), shown in Figure 1.

The thermostat has three locations. The first two, Heat and Cool, represent
states in which the thermostat heats and cools the environment it operates in,
respectively. The third, Check, represents a self-diagnostic state in which the
thermostat does not heat or cool. The continuous state space of the thermostat
consists of two continuous variables denoting an internally resettable clock c and
the temperature T in the environment in which the thermostat operates.

Each location has an associated invariant predicate defining the set of per-
mitted values for the continuous variables while in that location. The invariants
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for the thermostat are:

InvHeat(c, T ) := T 6 10∧c 6 3, InvCool(c, T ) := T > 5, InvCheck(c, T ) := c 6 1.

T <= 10 & c <= 3

Heat

T >= 9

T <= 6 −−> c := 0 c >= 0.5 −−> c := 0

c >= 2 −−> c := 0

T = 2

c = 1 CheckCool

.

.

.

.

..

.
T >= 5 c <= 1

T = − T/2

c = 1
c = 1

T = −T

Fig. 1. The Thermostat as an example of a Hybrid Systems

The initial states of a hybrid system are determined by a predicate Init. For the
thermostat, Init(l, c, T ) is defined as l = Heat ∧ c = 0 ∧ 5 6 T 6 10.

The discrete transitions between locations describe the logic of the software
system. Each such transition is comprised of two components: a guard predicate
defining a subset of the continuous state space in which the transition is enabled
(permitted), and a reset function describing an instantaneous change applied as
a side effect of the transition, as seen in the following definition of the discrete
transition relation:

(l, p)→D (l′, p′) := guardl,l′(p) ∧ resetl,l′(p) = p′ ∧ Invl(p) ∧ Invl′(p′)

It will be clear from Figure 1 what the guards and reset functions are. Note the
inherent non-determinism in a Hybrid Systems specification: when in Cool, the
system can jump to Heat whenever the temperature T is in the interval [5, 6].

Each location in a hybrid system has an accompanying flow function which
describes how the continuous variables change over time while the system is in
that location. The idea is that different locations correspond to different uses of
actuators available to the software system, the effects of which are reflected in the
flow function. In the thermostat example, the flow function corresponding to the
Cool location has the temperature decrease over time. This is expressed via the
differential equation Ṫ = −T , which is the usual short hand for T ′(t) = −T (t),
where T ′(t) denotes the derivative of the temperature function over time t.

In the canonical definition of hybrid systems, flow functions are specified as
solutions to differential equations (or differential inclusions) describing the dy-
namics of the continuous variables. We follow [2] in abstracting from these, taking
instead the solutions of these differential equations, which are flow functions Φ
which satisfy:

Φ(p, 0) = p and Φ(p, d+ d′) = Φ(Φ(p, d), d′)
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The idea is that Φ(p, d) denotes the value of the continuous variable after dura-
tion d, starting from the value p. We say that there is a (concrete) continuous
transition from a state (l, p) to a state (l, p′) if there is a non-negative duration
d such that p′ = Φl(p, d) with the invariant for l holding at every point along
the way:

(l, p)→C (l, p′) := ∃d∈R>0 . Φl(p, d) = p′ ∧ ∀06t6d . Invl(Φl(p, t)).

A flow function on R2 can be expressed as the product of two flow functions:
Φl((c0, T0), t) = (ϕl,c((c0, T0), t), ϕl,T((c0, T0), t)). In the thermostat example, as
in many other examples of hybrid systems, ϕl,c((c0, T0), t) does not actually
depend on T0 and ϕl,T((c0, T0), t) does not actually depend on c0. We call this
feature separability of the flow function. Our development currently relies heavily
on this property. Separability makes the form of the flow functions simpler:

Φl((c0, T0), t) = (ϕl,c(c0, t), ϕl,T(T0, t))

In the thermostat, ϕl,c(c0, t) = c0+t for all locations l, ϕHeat,T(T0, t) = T0+2t,
ϕCheck,T(T0, t) = T0 ∗ e−

1
2 t and ϕCool,T(T0, t) = T0 ∗ e−t. So ϕ′Cool,T(T0, t) =

−ϕCool,T(T0, t), solving the differential equation Ṫ = −T for the Cool location.
A transition is either continuous or discrete: →CD:=→D ∪ →C . A finite

sequence of transitions constitutes a trace and we denote by→→CD the transitive
reflexive closure of →CD. We now say that a state s is reachable if there is an
initial state i from which there is a trace to s, that is

Reach(s) := ∃i∈State . Init(i) ∧ i→→CD s.

The objective of hybrid system safety verification is to show that the set of
reachable states is a subset of a predefined set of “safe” states. For the thermo-
stat, the intent is to keep the temperature above 4.5 degrees at all times, and so
we define Safe(c, T ) := T > 4.5 (and Unsafe(c, T ) as its complement).

2.1 The Abstraction Method

There are uncountably many traces in a hybrid system, so safety is undecidable
in general. In concrete cases, however, safety may be (easily) provable if one
finds the proper proof invariant. Unfortunately these are often hard to find, so
we prefer methods that are more easily automated. The predicate abstraction
method of [2] is one such method.

The idea is to divide the continuous state space into a finite number of
convex subsets (polygons), A1, . . . , An, which yields a finite abstract state space,
AState := {(l, Ai) | l ∈ Loc, 1 6 i 6 n}, with an obvious embedding A : State→
AState of concrete states into abstract states. On this abstract state space,
one immediately defines abstract continuous transitions and abstract discrete
transitions (both potentially undecidable) as follows.

(l, P ) A→C (l, Q) := ∃p∈P,q∈Q . (l, p)→C (l, q)

(l, P ) A→D (l′, Q) := ∃p∈P,q∈Q . (l, p)→D (l, q).
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Define abstract reachability by AReach(a) := ∃s0∈State . Init(s0)∧A(s0) A→→CD a,
as expected. Also the predicates ASafe and AUnsafe, stating when abstract states
are safe / unsafe can be defined in the straightforward way.

Traces in the finite transition system constructed in this way are sufficiently
representative (see Figure 2.) of those in the original (concrete) system that one
can conclude safety of the latter from safety of the abstract system:

if ∀a∈AState .AReach(a)→ ASafe(a), then ∀s∈State .Reach(s)→ Safe(s).

s
CD

- s′ s0

CD

- s1

CD

- s2

CD

- . . .

∨ ∨ ∨ ∨ ∨
A(s)

A

CD

- A(s′) A(s0)
A

CD

- A(s1)
A

CD

- A(s2)
A

CD

- . . .

Fig. 2. The abstraction function

The interest and power of the abstraction method lies in two facts. First,
we do not need the exact definitions of A→C and A→D to conclude safety of the
concrete system from safety of the abstract system. We only need the property of
Figure 2, so we can over-estimate A→C and A→D (i.e. replace it with a transition
relation that allows more transitions). Second, there are good heuristics for how
to divide the continuous state space into regions, and how to decide whether
there should be an abstract transition from one abstract state to another.

This is indicated in Figure 3. The left hand side illustrates the challenge:
given abstract regions A and B, we are to determine whether some flow dura-
tion permits flow from points in A to points in B. Following the over-estimation
property just mentioned, we introduce an abstract transition from A to B when-
ever we cannot positively rule this out.

On the right hand side we see the abstract state space indicated for the
location Heat. The abstract state space consists of rectangles, possibly degenerate
(extending to −∞ or +∞). According to [2], a good candidate for an abstraction
is to take the values occurring in the specification (Figure 1) as the bounds of such
rectangles. (In case one cannot prove safety, there is of course the opportunity
for the user to refine the bounds.) The grey area indicates that from these states
also abstract discrete transitions are possible. The dashed area is unreachable,
because of the invariant for the Heat location. being reachable. All the abstract
transitions from the rectangle [0.5, 1)× [5, 6) are shown: as the temperature flow
function for Heat is ϕHeat,T(T0, t) = T0 + 2 ∗ t, and the clock flow function is
ϕHeat,c(c0, t) = c0 + t, these are all the possible abstract transitions.

Using the abstraction method, [2] proves the correctness of the thermostat.
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Fig. 3. The abstraction function computed

3 Formalisation

We now describe the Coq formalisation and the design choices made. We will
not pay much attention to the specifics of Coq and its type theory CiC, and will
instead focus on concerns relating to the use of computable reals and constructive
logic. The complete sources of the development are available on the web, as well
as a technical report describing the formalisation in more detail [22].

3.1 (Concrete) Hybrid Systems

We begin by showing our definition of a concrete system, the different parts of
which we discuss in the remainder of this section.

Record System : Type :=
{Point : CSetoid
; Location : Set
; Location eq dec : EqDec Location eq
; locations : ExhaustiveList Location
; State := Location × Point
; initial : State → Prop
; invariant : State → Prop
; invariant initial : initial subsetof invariant
; invariant stable : ∀ s,Stable (invariant s)
; flow : Location → Flow Point
; guard : State → Location → Prop
; reset : Location → Location → Point → Point }.
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This is a Coq definition of a record type of “Systems”, which contain a field
“Point”, representing the continuous state space and a field “Location”, repre-
senting the set of locations. Here, we take Point to be an arbitrary constructive
setoid, which is basically just a type with an equality on it. For Location, we
assume a decidable equality and a finite enumeration (“exhaustive list”) of loca-
tions. The other parts are as expected (“Flow Point” is the type of flow functions
on the type “Point”), except for the requirement that the invariant Invl is “Sta-
ble” for every location l, which we will discuss now.

3.2 Stability, Double Negation, and Computable Reals

Constructively, a proof of X → A ∨ B is a function that, given an X, returns
either a proof of A, or a proof of B. With this in mind, suppose we try to
implement le lt dec :∀ (x , y :CR), (x 6 y ∨y<x ), where CR are the constructive
reals. Then given x and y in CR, we are to produce a proof either of x 6 y
or of y < x. Unfortunately, the nature of computable reals only lets us observe
arbitrarily close approximations of x and y. If it happens to be the case that
x = y, then no matter how closely we approximate x and y, the error margins
(however small) will always leave open the possibility that y is really smaller
than x. Consequently, we will never be able to definitively conclude that x 6 y.

Computable reals do admit two variations of the proposition:

1. leltdecoverlap : ∀ (x y : CR), (x < y → ∀ z , (z 6 y ∨ x 6 z ))
2. leltdecDN : ∀ (x y : CR),¬¬(x 6 y ∨ y < x )

Both are weaker than the original, and are less straightforward to use. Nev-
ertheless, this is the path we will take in our development (we will heavily use
leltdecDN ), because just taking le lt dec as an axiom amounts to cheating. A
question that immediately arises is: How does one actually use this doubly
negated variant in proofs? One practical way is to observe that double nega-
tion, as a function on propositions, is a monad [21]. Writing DN P for ¬¬P , we
have the following two key operations that make DN a monad:

returnDN : ∀ A,A→ DN A
bindDN : ∀ A B ,DN A→ (A→ DN B)→ DN B

The first expresses that any previously obtained result can always be inserted
“into” the monad. The second expresses that results inside the monad may be
used freely in proofs of additional properties in the monad. For instance, one
may bindDN a proof of DN (x 6 y ∨ y < x) (obtained from leltdecDN above)
with a proof of (x 6 y ∨ y < x)→ DNP , yielding a proof of DN P .

Thus, DN establishes a “proving context” in which one may make use of
lemmas yielding results inside DN that may not hold outside of it (such as
leltdecDN ), as well as lemmas yielding results not in DN , which can always be
injected into DN using returnDN . The catch is that such proofs always end
up with results in DN , which begs the question: what good is any of this? In
particular, can leltdecDN be used to prove anything not doubly negated?
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As it happens, some propositions are stable in the sense that they are con-
structively equivalent to their own double negation. Examples include negations,
non-strict inequalities on real numbers, and any decidable proposition.

Requiring that hybrid system invariants are stable effectively lets us use clas-
sical reasoning when showing that invariants hold in certain states. One instance
where we need this is in the proof of transitivity of the concrete continuous tran-
sition.

Invariants are typically conjunctions of inequalities, which are stable only if
the inequalities are non-strict. Hence, the limits on observability of computable
real numbers ultimately mean that our development cannot cope with hybrid
systems whose location invariants use strict inequalities. We feel that this is not
a terrible loss. In Section 3.3 we will see analogous limitations in the choice of
abstraction parameters.

3.3 Abstract Hybrid Systems

We now want to define an abstract system and an abstraction function satisfying
the properties indicated in Figure 2. However, this is not possible, because we
cannot make a case distinction like x 6 0∨0 < x and therefore we cannot define
a function that maps a point (c, T ) to the rectangle R it is in. We can define a
function that approximates a point (c, T ) up to, say ε (ε > 0) and then decides
to send that point to the rectangle R the approximation is in. This implies that,
when one is close to the edge of a rectangle,

– different representations of a point (c, T ) may be sent to different rectangles,
– a point that is less than ε outside the rectangle R may still be sent to R.

The second is very problematic, because it means the property for the abstraction
function A depicted in Figure 2 no longer holds.

We argue that these problems are not merely inconvenient byproducts of
our use of constructive logic and computable reals, but actually reflect the pro-
found limitation of physical reality where one can only ever measure quantities
approximately, making case distinctions like x 6 0 ∨ 0 < x simply unrealistic.

Moreover, we claim that the classical abstraction method allows one to prove
the safety of systems that are unreliable in practice. We will not expand on this
here, but suppose we add a fourth location Off to the thermostat of Figure 1,
with Ṫ = −1, ċ = 1 and an arrow from Heat to Off with guard c > 2 ∧ T < 9.
Clearly, if the system can end up in location Off, it is unsafe. Now, using the
classical abstraction method, there is no transition to any state involving location
Off from the initial state, because as soon as c > 2, T > 9. However, when we
get close to c = 2, any small mistake in the measurement of T may send the
system to Off, making the whole hybrid system very unreliable.

The positive thing is that we do not really need the commutation property
of Figure 2. To address the problems we

– let regions in the abstract hybrid systems overlap (ideally as little as possible,
e.g. only at the edges).
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– replace the abstract relations A→C and A→D by functions over cont trans and
over disc trans that take a region R0 as input and output a list of regions
including R0: (Ro, R1, . . . , Rn) in such a way that ∪06i6nRi is an over-
approximation of the set of states reachable by a continuous (resp. discrete)
step from a state in R0.

– loosen the requirement on the abstraction function A; for s ∈ State, we only
require DN (∃r∈Region . s ∈ r).

To summarise, if s →C s′, then we don’t require A(s′) to be in the list
over cont trans(A(s)), but we only require s′ to be in the

⋃
over cont trans(A(s)).

This simple change relieves us from having to determine the exact regions that
points are in: they just should be covered. The functions over cont trans and
over disc trans yield a notion of trace in the abstract hybrid system in the
straightforward way: starting from R0, take an R1 in over cont trans(R0), then
an R2 in over disc trans(R1), and so forth.

Whereas in a concrete hybrid system states consist of a location paired with
a point in the continuous state space, in an abstract hybrid system states consist
of a location paired with the “name” of a region corresponding to a subset of the
continuous state space. From now on we will use a “concrete.” prefix for names
like State defined in section 3.1, which now have abstract counterparts. Region is
a field from a record type Space bundling region sets with related requirements:

Record Space : Type :=
{Region : Set
; Region eq dec : EqDec Region eq
; regions : ExhaustiveList Region
; NoDup regions : NoDup regions
; in region : Container Point Region
; regions cover : ∀ (l : Location) (p : Point),

invariant (l , p)→ DN {r : Region | p ∈ r }}.

The Container Point Region type specified for in region reduces to Point →
Region → Prop. Container is a type class that provides the notation “x ∈ y”.
Finally, regions cover expresses that each concrete point belonging to a valid
state must be represented by a region—a crucial ingredient when arguing that
unreachability in the abstract system implies unreachability in the concrete sys-
tem. The double negation in its result type is both necessary and sufficient:

It is necessary because regions cover boils down to a (partial) function that,
given a concrete point, must select an abstract region containing that point.
This means that it must be able to decide on which side of a border between two
regions the given point lies. As we saw in section 3.2, that kind of decidability is
only available inside DN unless all region borders have nontrivial overlap, which
is undesirable.

Fortunately, the double negation is also sufficient, because we will ultimately
only use regions cover in a proof of ... → ¬concrete.reachable s (for some uni-
versally quantified variable s), which, due to its head type being a negation, is
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stable, and can therefore be proved in and then extracted from DN . Hence, we
only need regions cover ’s result in DN .

3.4 Under-Estimation and Over-Estimation

Ultimately, in our development we are writing a program that attempts to pro-
duce hybrid system safety proofs. Importantly, we are not writing a complete
hybrid system safety decision procedure: if the concrete system is unsafe or the
abstraction method fails, our program will simply not produce a safety proof. It
might seem, then, that we are basically writing a tactic for a particular problem
domain. However, tactics in Coq are normally written in a language called Ltac,
and typically rely on things like pattern matching on syntax. Our development,
on the other hand, is very much written in regular Gallina, with hardly any
significant use of Ltac.

We define underestimation P to be either a proof of P , or not:

Definition underestimation (P : Prop) : Set := {b : bool | b = true → P }.

The bool in the definition nicely illustrates why we call this an “under-estimation”:
it may be false even when P holds. We can now describe the functionality of our
program by saying that it under-estimates hybrid system safety, yielding a term
of type underestimation Safe, where Safe is a proposition expressing safety of a
hybrid system.

Considered as theorems, under-estimations are not very interesting, because
they can be trivially “proved” by taking false. Hence, the value of our program
is not witnessed by the mere fact that it manages to produce terms of type
underestimation Safe, but rather by the fact that when run, it actually manages
to return true for the hybrid system we are interested in (e.g. the thermostat).
It is for this reason that we primarily think of the development as a program
rather than a proof, even though the program’s purpose is to produce proofs.

The opposite of an under-estimation is an over-estimation:

Definition overestimation (P : Prop) : Set := {b : bool | b = false → ¬P }.

Since hybrid system safety is defined as unreachability of unsafe states, we
may equivalently express the functionality of our development by saying that
it over-estimates unsafe state reachability. Indeed, most subroutines in our pro-
grams will be over-estimators rather than under-estimators. Notions of over-
estimation and under-estimation trickle down through all layers of our devel-
opment, down to basic arithmetic. For instance, we employ functions such as
(recall that CR denotes the type of constructive reals):

overestimate6CR
(ε : Q+) : ∀ x y : CR, overestimation (x 6CR y)

As discussed earlier, 6CR is not decidable. overestimate6CR
merely makes a “best

effort” to prove ¬(x 6CR y) using ε-approximations. A smaller ε will result in
fewer spurious true results.
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3.5 Abstract Space Construction

When building an abstract system, one is in principle free to divide the con-
tinuous state space up whichever way one likes. However, if the regions are too
fine-grained, there will have to be very many of them to cover the continuous
state space of the concrete system, resulting in poor performance. On the other
hand, if the regions are too coarse, they will fail to capture the subtleties of the
hybrid system that allow to prove it safe (if indeed it is safe at all). Furthermore,
careless use of region overlap can result in undesirable abstract transitions (and
therefore traces), adversely affecting the abstract system’s utility.

In [2], a heuristic for interval bound selection is described, where the bounds
are taken from the constants that occur in the invariant, guard, and safety
predicates. For the thermostat, we initially attempted to follow this heuristic
and use the same bounds, but found that due to our use of computable reals,
we had to tweak the bounds somewhat to let the system successfully produce
a safety proof. Having to do this “tweaking” manually is clearly not ideal. One
may want to develop heuristics for this.

Another way in which our thermostat regions differ from [2] lies in the fact
that our bounds are always inclusive, which means adjacent regions overlap in
lines.

3.6 Abstract Transitions and Reachability

Once we have a satisfactory abstract Space, our goal is to construct an over-
estimatable notion of abstract reachability implied by concrete reachability, so
that concrete unreachability results may be obtained simply by executing the
abstract reachability over-estimator. We first over-estimate the continuous tran-
sitions; we need the following definition for that.

Definition shared cover
(cs : concrete.State → Prop) (ss : abstract .State → Prop) : Prop :=
∀ s : concrete.State, s ∈ cs → DN (∃ r : abstract .State, s ∈ r ∧ r ∈ ss).

A set of concrete states is said to be sharedly-covered by a set of abstract
states if for each of the concrete states in the former there is an abstract state
in the latter that contains it.

We now specify what the type of over cont trans should be.

over cont trans : ∀ s : abstract .State,
{p : list abstract .State | NoDup p ∧ shared cover

(concrete.invariant ∩ (overlap s ◦ flip concrete.cont trans)) p}

So, over cont trans s should produce a list of abstract states p without dupli-
cates, such that p is a shared cover of the collection of concrete states c that
satisfy the invariant and whose set of origins under concrete.cont trans have an
overlap with s. In more mathematical terms: p should form a shared cover of
{c ∈ State | Inv(c)∧s∩{c′ | c′ →C c} 6= ∅}. We similarly specify over disc trans
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as an over-estimator for concrete disc trans and over initial as an over-estimator
of concrete.initial .

We now consider the properties we require for abstract .reachable. An obvious
candidate is:

∀ (s : concrete.State), concrete.reachable s →
∀ (s ′ : abstract .State), s ∈ s ′ → abstract .reachable s ′.

because it implies

∀ (s : concrete.State)
(∃ s ′ : abstract .State, s ∈ s ′ ∧ ¬abstract .reachable s ′)→
¬concrete.reachable s,

This expresses that to conclude unreachability of a concrete state, one only needs
to establish unreachability of one abstract state that contains it. However, this
definition neglects to facilitate sharing: a concrete state may be in more than one
abstract state. So, if a concrete state is in one abstract state which is unreachable,
it may still be in another abstract state which is reachable. One should establish
unreachability of all abstract states containing the concrete state. Hence, what
we really want is an abstract .reachable satisfying:

∀ s : concrete.State,
(∀ s ′ : abstract .State, s ∈ s ′ → ¬abstract .reachable s ′)→
¬concrete.reachable s.

3.7 Under-Estimating Safety

We now show how a decision procedure for abstract .reachable lets us under-
estimate hybrid system safety, and in particular, lets us obtain a proof of ther-
mostat safety. (The construction of the decision procedure itself is detailed in
the next section.) So suppose we have reachable dec : decider abstract .reachable.
ThermoSafe is defined as thermo unsafe ⊆ concrete.unreachable. Since we triv-
ially have ¬overlap unsafe concrete.reachable → ThermoSafe, we also have:

Definition under thermo unsafe unreachable : underestimation ThermoSafe.

Using a tiny utility underestimation true of type ∀ P (o:underestimation P), o =
true → P , we can now run this under-estimator to obtain a proof of the ther-
mostat system’s safety:

Theorem : ThermoSafe.
Proof .

apply (underestimation true under thermo unsafe unreachable).
vm compute.reflexivity .

Qed.
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The first apply reduces the goal to

under thermo unsafe unreachable = true.

The vm compute tactic invocation then forces evaluation of the left hand side,
which will in turn evaluate over thermo unsafe reachable, which will evaluate
reachable dec, which will evaluate the over-estimators of the continuous and
discrete transitions. This process, which takes about 35 seconds on a modern
desktop machine, eventually reduces under thermo unsafe unreachable to true,
leaving true = true, proved by reflexivity .

We can now also clearly see what happens when the abstraction method
“fails” due to poor region selection, overly simplistic transition/initiality over-
estimators, or plain unsafety of the system. In all these cases, vm compute re-
duces under thermo unsafe unreachable to false, and the subsequent reflexivity
invocation will fail.

This concludes the high level story of our development. What remains are
the implementation of reachable dec in terms of the decidable over-estimators
for abstract initiality and continuous and discrete transitions, and the imple-
mentation of those over-estimators themselves. The former is a formally verified
graph reachability algorithm, that we don’t detail here. The over-estimator for
continuous transitions, over cont trans will be detailed in the next section for
the thermostat case.

3.8 Over-Estimating Continuous Abstract Transitions

We now discuss the implementation of over cont trans. Given two regions r src
and r dst , if we can determine that there are no points in r src which the flow
function maps to points in r dst , then we don’t put an abstract continuous
transition between r src and r dst . Clearly, this is impossible to meaningfully
over-estimate for a general flow function and general regions. However, the ther-
mostat posesses three key properties that we can exploit:

1. its continuous space is of the form Rn;
2. abstract regions correspond to multiplied R intervals;
3. its flow functions are both separable and range invertible.

The notion of separability has already been discussed in Section 2.
A flow function f on CR is range invertible if

∃ (range inverse : OpenRange → OpenRange → OpenRange),
∀ (a : OpenRange) (p : CR), p ∈ a →
∀ (b : OpenRange) (d : Duration), f p d ∈ b → d ∈ range inverse a b

Here, OpenRange represents potentially unbounded intervals in R (with bounds
closed if present. In other words, if ϕ : R2 → R is a flow function with range
inverse F and a, b are intervals in R, then F (a, b) is an interval that con-
tains all t for which ϕ(x, t) ∈ b for some x ∈ a. Range invertibility is a less
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demanding alternative to point invertibility: ϕ−1 is the point inverse of ϕ if
∀x, y ∈ R(ϕ(x, ϕ−1(x, y)) = y). So a point inverse ϕ−1(x, y) computes the exact
time t it takes to go from x to y via flow ϕ. A range inverse computes an interval
that contains this t.

In the formalisation we use a modest library of flow functions when defining
the thermostat’s flow. Included in that library are range-inverses, which conse-
quently automatically apply to the thermostat’s flow. Hence, no ad-hoc work is
needed to show that the thermostat’s flow functions are range-invertible. Having
defined the class of separable range-invertible flow functions, and having argued
that the thermostat’s flow is in this class, we now show how to proceed with our
over-estimation of existence of points in r src which the flow function map to
points in r dst . Regions in the abstract space for our thermostat are basically
pairs of regions in the composite spaces, so r src and r dst can be written as
(r src temp, r src clock) and (r dst temp, r dst clock), respectively, where each
of these four components are intervals.

We now simply use an OpenRange overlap over-estimator of type

Q+ → ∀ a b : OpenRange, overestimation (overlap a b)

(defined in terms of things like overestimate6CR
shown in section 3.4) to over-

estimate whether the following three intervals overlap:

1. [0, inf ]
2. range inverse temp flow r src temp r dst temp
3. range inverse clock flow r src clock r dst clock

For a visual explanation, one may consult the left drawing in Figure 3 and view
r src clock as [a1, b1], r dst clock as [c1, d1] etc. Overlap of 2 and 3 is equivalent
to existence of a point in r src from which one can flow to a point in r dst . After
all, if these two range inverses overlap, then there is a duration d that takes a
certain temperature value in r src temp to a value in r dst temp and also takes
a certain clock value in r src clock to a value in r dst clock . If 2 and 3 do not
overlap, then either it takes so long for the temperature to flow from r src temp
to r dst temp that any clock value in r src clock would “overshoot” r dst clock ,
or vice versa. Finally, if 1 does not overlap with 2 and 3, then apparently one
could only flow backward in time, which is not permitted. Hence, overlap of
these three ranges is a necessary condition for existence of concrete flow from
points in r src to points in r dst , and so our abstract .cont trans over-estimator
may justifiably return “false” when the overlap over-estimator manages to prove
absence of overlap.

4 Related work

Verification of hybrid systems is an active field of research and there is a number
of tools developed with this goal in mind; see [15] for a comprehensive list. Most of
them are based on abstract refinement methods, either using box representations
[20,17] or with polyhedra approximations [2,5,6].
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Many of those tools are implemented in MATLAB [13] and those using some
general programming language of choice most often rely on standard floating
point arithmetic, which comes with its rounding errors. Some tools that address
this problem include PHAVer [8], which relies on the Parma Polyhedra Library
[3] for exact computations with non-convex polyhedra and HSolver [19], which
is based on the constraint solver RSolver [18].

Formal verification becomes more and more important, especially in the field
of hybrid systems, which are used to model safety critical systems of growing
complexity. There has been previous work on using general purpose theorem
provers for verification of hybrid systems: see [1,10] and [12,4] for works using,
respectively, PVS and STeP. KeYmaera [16] is a dedicated interactive theorem
prover for specification and verification logic for hybrid systems. It combines
deductive, real algebraic, and computer algebraic prover technologies and allows
users to model hybrid systems, specify their properties and prove them in a
semi-automated way.

However, to the best of our knowledge, none of the work or tools discussed
above rely on a precise model of real number computations completely verified
in a theorem prover, such as the model of CoRN used in this work.

5 Conclusions and further research

The presented verification of hybrid systems in Coq gives a nice showcase of
proof-by-computation-on-computable-reals. The computable reals in CoRN do
really complicated things for us, by approximating values for various real number
expressions at great precision. The development also contains some nice layers
of abstraction, involving the sophisticated use of type classes, e.g. the systematic
use of estimators to make tactic-like optional-deciders, at each level in the stack
and the use of the double negation monad.

It remains to be seen how far this automated verification approach can be
taken, given the fact that we have limited ourselves to hybrid systems where we
have a solution to the differential equation as a flow function, this flow function
is separable (Section 2) and range invertible (Section 3.8) and the invariants are
stable (Section 3.1). Finally, the reset functions should not be too strange, see
[22] for details. If the flow functions are given, the largest part of the work is in
producing useful range inverse functions. Note that we always have the trivial
range inverse function, that just returns R, but that is not useful. We want a
function that actually helps to exclude certain abstract continuous transitions.

There is still a lot of room for more clever heuristics, possibly with less re-
strictive preconditions. The heuristic in [2] for bound selection doesn’t work out
of the box, but manual tweaking is obviously not ideal, so some more experi-
mentation is required here. Finally, in case safety cannot be proved, one would
like the system to generate an “offending trace” automatically, which can then
be inspected by the user.
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